Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/99374
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: High-contrast visualization of upconversion luminescence in mice using time-gating approach
Author: Zheng, X.
Zhu, X.
Lu, Y.
Zhao, J.
Feng, W.
Jia, G.
Wang, F.
Li, F.
Jin, D.
Citation: Analytical Chemistry, 2016; 88(7):3449-3454
Publisher: American Chemical Society
Issue Date: 2016
ISSN: 0003-2700
1520-6882
Statement of
Responsibility: 
Xianlin Zheng, Xingjun Zhu, Yiqing Lu, Jiangbo Zhao, Wei Feng, Guohua Jia, Fan Wang, Fuyou Li, and Dayong Jin
Abstract: Optical imaging through the near-infrared (NIR) window provides deep penetration of light up to several centimeters into biological tissues. Capable of emitting 800 nm luminescence under 980 nm illumination, the recently developed upconversion nanoparticles (UCNPs) suggest a promising optical contrast agent for in vivo bioimaging. However, presently they require high-power lasers to excite when applied to small animals, leading to significant scattering background that limits the detection sensitivity as well as a detrimental thermal effect. In this work, we show that the time-gating approach implementing pulsed illumination from a NIR diode laser and time-delayed imaging synchronized via an optical chopper offers detection sensitivity more than 1 order of magnitude higher than the conventional approach using optical band-pass filters (S/N, 47321/6353 vs 5339/58), when imaging UCNPs injected into Kunming mice. The pulsed laser illumination (70 μs ON in 200 μs period) also reduces the overall thermal accumulation to 35% of that under the continuous-wave mode. Technical details are given on setting up the time-gating unit comprising an optical chopper, a pinhole, and a microscopy eyepiece. Being generally compatible with any camera, this provides a convenient and low cost solution to NIR animal imaging using UCNPs as well as other luminescent probes.
Keywords: Animals
Mice, Inbred Strains
Mice
Luminescent Agents
Lasers
Temperature
Infrared Rays
Time Factors
Luminescence
Nanoparticles
Description: Published: February 25, 2016
Rights: © 2016 American Chemical Society
DOI: 10.1021/acs.analchem.5b04626
Grant ID: http://purl.org/au-research/grants/arc/FT130100517
Published version: http://dx.doi.org/10.1021/acs.analchem.5b04626
Appears in Collections:Aurora harvest 7
IPAS publications

Files in This Item:
File Description SizeFormat 
hdl_99374.pdfAccepted version3.1 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.