Soil and Land Systems
Permanent URI for this community
The Soil and Land Systems discipline was part of the School of Earth and Environmental Sciences until 2013. Since then Soil Science has become part of the School of Agriculture, Food and Wine.
Browse
Browsing Soil and Land Systems by Author "Armstrong, R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Metadata only Mobility, solubility and lability of fluid and granular forms of P fertiliser in calcareous and non-calcareous soils under laboratory conditions(Kluwer Academic Publ, 2005) Lombi, E.; McLaughlin, M.; Johnston, C.; Armstrong, R.; Holloway, R.Despite a long history of application of phosphorus fertilisers, P deficiency is still a major limitation to crop production on calcareous soils. Recent field research conducted in highly calcareous soils in southern Australia has demonstrated that both grain yield and P uptake of wheat (Triticum aestivum L.) is greater when fluid forms of P are used compared to granular forms. To improve our understanding of the mechanisms underlying this response to P in the field, we compared the lability, solubility and mobility of P applied as either a fluid (3 products) or granular (3 products) form to two calcareous and one alkaline non-calcareous soils in the laboratory. Over a five-week period, between 9.5 and 18 % of the P initially present in the fertiliser granules did not diffuse into the surrounding soil. The degree of granule dissolution was independent of the soil type. In contrast, P solubility, lability and diffusion were significantly greater when fluid products were applied to the calcareous soils, but not to the alkaline non-calcareous soil. These findings are discussed in relation to field trials results where fluid products outperformed granular fertilisers.Item Metadata only The rapid assessment of concentrations and solid phase associations of macro- and micronutrients in alkaline soils by mid-infrared diffuse reflectance spectroscopy(C S I R O Publishing, 2002) Bertrand, I.; Janik, L.; Holloway, R.; Armstrong, R.; McLaughlin, M.Chemical analysis is a crucial but often expensive and time consuming step in the characterisation of soils. Mid-infrared diffuse reflectance (MIR-DRIFT) spectroscopy coupled with partial least square (PLS) analysis was used to determine macro- and micronutrient concentrations of a range of alkaline soils from southern Australia. Solid phase associations of macro- and micronutrients were also investigated using the mineralogical information contained in the infrared spectra of soil samples. Results showed that MIR-PLS analysis is a powerful and rapid technique for the accurate prediction of more than 15 chemical properties from each soil sample spectrum. Correlation coefficients for MIR derived concentration versus laboratory determined values were greater than R2 = 0.80 for soil moisture, calcium carbonate concentration, total concentration of Mg, K, S, Fe, Al, Mn, Zn, Cu, and oxalate- extractable Al, Fe, Mn, and Si. In calcareous soils, sulfur was associated with carbonate and conversely Mg was more related to the clay concentration of soils. Micronutrients such as Fe, Zn, Mn, and Cu were positively associated with smectite/illite in the clay fraction and negatively with kaolinite. The potential use of these results in partitioning model to assess plant available micronutrients pools is discussed.