ARC Training Centre for Innovative Wine Production publications
Permanent URI for this collection
Browse
Browsing ARC Training Centre for Innovative Wine Production publications by Author "Albertin, W."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Metadata only Impact of Lachancea thermotolerans on chemical composition and sensory profiles of Merlot wines(Elsevier, 2021) Hranilovic, A.; Albertin, W.; Capone, D.L.; Gallo, A.; Grbin, P.R.; Danner, L.; Bastian, S.E.P.; Masneuf-Pomarede, I.; Coulon, J.; Bely, M.; Jiranek, V.Wines from warm(ing) climates often contain excessive ethanol but lack acidity. The yeast Lachancea thermotolerans can ameliorate such wines due to partial conversion of sugars to lactic acid during alcoholic fermentation. This study compared the performance of five L. thermotolerans strains in two inoculation modalities (sequential and co-inoculation) to Saccharomyces cerevisiae and un-inoculated treatments in high sugar/low acidity Merlot fermentations. The pH and ethanol levels in mixed-culture dry wines were either comparable, or significantly lower than in controls (decrease of up to 0.5 units and 0.90% v/v, respectively). The analysis of volatile compounds revealed marked differences in major flavour-active yeast metabolites, including up to a thirty-fold increase in ethyl lactate in certain L. thermotolerans modalities. The wines significantly differed in acidity perception, alongside 18 other sensory attributes. Together, these results highlight the potential of some L. thermotolerans strains to produce ‘fresher’ wines with lower ethanol content and improved flavour/balance.Item Open Access Impact of Lachancea thermotolerans on Chemical Composition and Sensory Profiles of Viognier Wines(MDPI AG, 2022) Hranilovic, A.; Albertin, W.; Capone, D.L.; Gallo, A.; Grbin, P.R.; Danner, L.; Bastian, S.E.P.; Masneuf-Pomarede, I.; Coulon, J.; Bely, M.; Jiranek, V.Viognier is a warm climate grape variety prone to loss of acidity and accumulation of excessive sugars. The yeast Lachancea thermotolerans can improve the stability and balance of such wines due to the partial conversion of sugars to lactic acid during alcoholic fermentation. This study compared the performance of five L. thermotolerans strains in co-inoculations and sequential inoculations with Saccharomyces cerevisiae in high sugar/pH Viognier fermentations. The results high lighted the dichotomy between the non-acidified and the bio-acidified L. thermotolerans treatments, with either comparable or up to 0.5 units lower pH relative to the S. cerevisiae control. Significant differences were detected in a range of flavour-active yeast volatile metabolites. The perceived acidity mirrored the modulations in wine pH/TA, as confirmed via “Rate-All-That-Apply” sensory analysis. Despite major variations in the volatile composition and acidity alike, the varietal aromatic expression (i.e., stone fruit aroma/flavour) remained conserved between the treatments.Item Open Access Oenological traits of Lachancea thermotolerans show signs of domestication and allopatric differentiation(Nature Publishing Group, 2018) Hranilovic, A.; Gambetta, J.M.; Schmidtke, L.; Boss, P.K.; Grbin, P.R.; Masneuf-Pomarede, I.; Bely, M.; Albertin, W.; Jiranek, V.The yeast Lachancea thermotolerans (previously Kluyveromyces thermotolerans) is a species of large, yet underexplored, oenological potential. This study delivers comprehensive oenological phenomes of 94 L. thermotolerans strains obtained from diverse ecological niches worldwide, classified in nine genetic groups based on their pre-determined microsatellite genotypes. The strains and the genetic groups were compared for their alcoholic fermentation performance, production of primary and secondary metabolites and pH modulation in Chardonnay grape juice fermentations. The common oenological features of L. thermotolerans strains were their glucophilic character, relatively extensive fermentation ability, low production of acetic acid and the formation of lactic acid, which significantly affected the pH of the wines. An untargeted analysis of volatile compounds, used for the first time in a population-scale phenotyping of a non-Saccharomyces yeast, revealed that 58 out of 90 volatiles were affected at an L. thermotolerans strain level. Besides the remarkable extent of intra-specific diversity, our results confirmed the distinct phenotypic performance of L. thermotolerans genetic groups. Together, these observations provide further support for the occurrence of domestication events and allopatric differentiation in L. thermotolerans population.Item Open Access The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems(Public Library Science, 2017) Hranilovic, A.; Bely, M.; Masneuf-Pomarede, I.; Jiranek, V.; Albertin, W.; Fairhead, C.The yeast Lachancea thermotolerans (formerly Kluyveromyces thermotolerans) is a species with remarkable, yet underexplored, biotechnological potential. This ubiquist occupies a range of natural and anthropic habitats covering a wide geographic span. To gain an insight into L. thermotolerans population diversity and structure, 172 isolates sourced from diverse habitats worldwide were analysed using a set of 14 microsatellite markers. The resultant clustering revealed that the evolution of L. thermotolerans has been driven by the geography and ecological niche of the isolation sources. Isolates originating from anthropic environments, in particular grapes and wine, were genetically close, thus suggesting domestication events within the species. The observed clustering was further validated by several means including, population structure analysis, F-statistics, Mantel's test and the analysis of molecular variance (AMOVA). Phenotypic performance of isolates was tested using several growth substrates and physicochemical conditions, providing added support for the clustering. Altogether, this study sheds light on the genotypic and phenotypic diversity of L. thermotolerans, contributing to a better understanding of the population structure, ecology and evolution of this non-Saccharomyces yeast.