Physiology publications
Permanent URI for this collection
Browse
Browsing Physiology publications by Author "Adams, M.B."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Metadata only A premature increase in circulating cortisol suppresses expression of 11β hydroxysteroid dehydrogenase type 2 messenger ribonucleic acid in the adrenal of the fetal sheep(Oxford University Press, 2000) Ross, J.T.; McMillen, I.C.; Adams, M.B.; Coulter, C.L.We have investigated the effect of intrafetal cortisol administration, before the normal prepartum cortisol surge, on the expression of 11beta hydroxysteroid dehydrogenase (11betaHSD) type 2 mRNA in the fetal adrenal. We also determined whether increased fetal cortisol concentrations can stimulate growth of the fetal adrenal gland or increase expression of adrenal steroidogenic enzymes. Cortisol (hydrocortisone succinate: 2.0-3.0 mg in 4.4 ml/24 h) was infused into fetal sheep between 109 and 116 days of gestation (cortisol infused; n = 12), and saline was administered to control fetuses (saline infused; n = 13) at the same age. There was no effect of cortisol infusion on the fetal adrenal:body weight ratio (cortisol: 101.7 +/- 5.3 mg/kg; saline: 108.2 +/- 4.3 mg/kg). The ratio of adrenal 11betaHSD-2 mRNA to 18S rRNA expression was significantly lower, however, in the cortisol-infused group (0.75 +/- 0.02) compared with the group receiving saline (1.65 +/- 0.14). There was no significant effect of intrafetal cortisol on the relative abundance of adrenal CYP11A1, CYP17, CYP21A1, and 3betaHSD mRNA. A premature elevation in fetal cortisol therefore resulted in a suppression of adrenal 11betaHSD-2. Increased intra-adrenal exposure to cortisol at this stage of gestation is, however, not sufficient to promote adrenal growth or steroidogenic enzyme gene expression.Item Metadata only Glucocorticoids decrease phenylethanolamine N-methyltransferase mRNA expression in the immature foetal sheep adrenal(Wiley-Blackwell, 1999) Adams, M.B.; Ross, J.T.; Butler, T.G.; McMillen, I.C.This study examined the impact of a chronic physiological elevation of plasma cortisol levels on adrenal catecholamine synthetic enzyme and proenkephalin A mRNA expression in foetal sheep. Cortisol (2.5-3. 0 mg.5 ml-1.24 h-1, n=9) or saline (0.9% saline, n=6) was infused into foetal sheep for 7 days between 109 days and 116 days gestation. Foetal plasma cortisol concentrations were higher (P<0.0005) in the cortisol infused foetuses when compared with the saline infused group (43.07+/-4.13 nmol.l-1 vs 1.67+/-0.10 nmol.l-1). There were no differences, however, in the plasma ACTH levels between the two groups. Using Northern blot analysis, adrenal phenylethanolamine N-methyltransferase (PNMT) mRNA expression was found to be reduced (P<0.005) fivefold in the cortisol infused foetuses when compared with the controls, as was the relative area of the adrenal medulla which stained positively with anti-PNMT (28.1+/-2.5% vs 44.8+/-4.8%, P<0.007). No effect of cortisol infusion was observed on adrenal tyrosine hydroxylase mRNA and protein expression or proenkephalin A mRNA expression. We conclude that before birth, adrenaline synthesis may be suppressed by a novel direct, or indirect, inhibitory effect of glucocorticoids on PNMT mRNA expression.