School of Translational Health Science
Permanent URI for this community
Browse
Browsing School of Translational Health Science by Author "Adams, L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Metadata only Association between liver-specific gene polymorphisms and their expression levels with nonalcoholic fatty liver disease(John Wiley & Sons, 2013) Adams, L.; White, S.; Marsh, J.; Lye, S.; Connor, K.; Maganga, R.; Ayonrinde, O.; Olynyk, J.; Mori, T.; Beilin, L.; Palmer, L.; Hamdorf, J.; Pennell, C.Genetic factors account for a significant proportion of the phenotypic variance of nonalcoholic fatty liver disease (NAFLD); however, very few predisposing genes have been identified. We aimed to (1) identify novel genetic associations with NAFLD by performing a genome-wide association study (GWAS), and (2) examine the biological expression of the strongest genetic associations in a separate cohort. We performed GWAS of a population-based cohort (Raine Study) of 928 adolescents assessed for NAFLD by ultrasound at age 17. Expression of genes with single nucleotide polymorphisms (SNPs) that were associated with NAFLD at a significance level of P < 10−5 was examined in adults with NAFLD and controls by quantifying hepatic messenger RNA (mRNA) expression and serum levels of protein. After adjustment for sex and degree of adiposity, SNPs in two genes expressed in liver were associated with NAFLD adolescents: group-specific component (GC) (odds ratio [OR], 2.54; P = 1.20 × 10−6) and lymphocyte cytosolic protein-1 (LCP1) (OR, 3.29; P = 2.96 × 10−6). SNPs in two genes expressed in neurons were also associated with NAFLD: lipid phosphate phosphatase-related protein type 4 (LPPR4) (OR, 2.30; P = 4.82 × 10−6) and solute carrier family 38 member 8 (SLC38A8) (OR, 3.14; P = 1.86 × 10−6). Hepatic GC mRNA was significantly reduced (by 83%) and LCP1 mRNA was increased (by 300%) in liver biopsy samples from patients with NAFLD compared to controls (P < 0.05). Mean serum levels of GC protein were significantly lower in patients with NAFLD than controls (250 ± 90 versus 298 ± 90, respectively; P = 0.004); GC protein levels decreased with increasing severity of hepatic steatosis (P < 0.01). Conclusion: The association between GC and LCP1 SNPs and NAFLD as well as altered biological expression implicate these genes in the pathogenesis of NAFLD.Item Metadata only Cholesteryl ester transfer protein gene polymorphisms increase the risk of fatty liver in females independent of adiposity(Wiley, 2012) Adams, L.; Marsh, J.; Ayonrinde, O.; Olynyk, J.; Ang, W.; Beilin, L.; Mori, T.; Palmer, L.; Oddy, W.; Lye, S.; Pennell, C.Background and aim
Environmental factors including excessive caloric intake lead to disordered lipid metabolism and fatty liver disease (FLD). However, FLD demonstrates heritability suggesting genetic factors are also important. We aimed to use a candidate gene approach to examine the association between FLD and single nucleotide polymorphisms (SNPs) in lipid metabolism genes in the adolescent population-based Western Australian Pregnancy (Raine) Cohort.Methods
A total 951 seventeen year-olds underwent hepatic ultrasound, anthropometric and biochemical characterization, DNA extraction and genotyping for 57 SNPs in seven lipid metabolism genes (ApoB100, ATGL, ABHD5, MTTP, CETP, SREBP-1c, PPARα). Associations were adjusted for metabolic factors and Bonferroni corrected.Results
The prevalence of FLD was 16.2% (11.4% male vs 21.2% female, P=0.001). Multivariate analysis of metabolic factors found suprailiac skinfold thickness (SST) to be the major predictor of FLD in females and males (odds ratio [OR] 1.11, 95% confidence interval [CI] 1.08-1.15, P=1.7×10(-10) and OR 1.17, 95%CI 1.13-1.22, P=2.4×10(-11) , respectively). In females, two SNPs in linkage disequilibrium from the CETP gene were associated with FLD: rs12447924 (OR 2.16, 95%CI 1.42-3.32, P=0.0003) and rs12597002 (OR=2.22, 95%CI 1.46-3.41 P=0.0002). In lean homozygotes, the probability of FLD was over 30%, compared with 10-15% in lean heterozygotes and 3-5% in lean wild-types. However, these associations were modified by SST, such that for obese individuals, the probability of FLD was over 30% in all genotype groups.Conclusions
Cholesteryl ester transfer protein gene polymorphisms are associated with an increased risk of FLD in adolescent females. The effect is independent of adiposity in homozygotes, thereby placing lean individuals at a significant risk of FLD.