Pathology
Permanent URI for this community
Pathology is part of the School of Medical Sciences.
Browse
Browsing Pathology by Author "Ahmed, F."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Metadata only Pathophysiological response to experimental diffuse brain trauma differs as a function of developmental age(Karger, 2010) Cernak, I.; Chang, T.; Ahmed, F.; Cruz, M.; Vink, R.; Stoica, B.; Faden, A.The purpose of experimental models of traumatic brain injury (TBI) is to reproduce selected aspects of human head injury such as brain edema, contusion or concussion, and functional deficits, among others. As the immature brain may be particularly vulnerable to injury during critical periods of development, and pediatric TBI may cause neurobehavioral deficits, our aim was to develop and characterize as a function of developmental age a model of diffuse TBI (DTBI) with quantifiable functional deficits. We modified a DTBI rat model initially developed by us in adult animals to study the graded response to injury as a function of developmental age – 7-, 14- and 21-day-old rats compared to young adult (3-month-old) animals. Our model caused motor deficits that persisted even after the pups reached adulthood, as well as reduced cognitive performance 2 weeks after injury. Moreover, our model induced prominent edema often seen in pediatric TBI, particularly evident in 7- and 14-day-old animals, as measured by both the wet weight/dry weight method and diffusion-weighted MRI. Blood-brain barrier permeability, as measured by the Evans blue dye technique, peaked at 20 min after trauma in all age groups, with a second peak found only in adult animals at 24 h after injury. Phosphorus MR spectroscopy showed no significant changes in the brain energy metabolism of immature rats with moderate DTBI, in contrast to significant decreases previously identified in adult animals.Item Metadata only The "dark side" of endocannabinoids: A neurotoxic role for anandamide(Lippincott Williams & Wilkins, 2004) Cernak, I.; Vink, R.; Natale, J.; Stoica, B.; Lea, P.; Movesesyan, V.; Ahmed, F.; Knoblach, S.; Fricke, S.; Faden, A.Endocannabinoids, including 2-arachidonoylglycerol and anandamide (N-arachidonoylethanolamine; AEA), have neuroprotective effects in the brain through actions at CB1 receptors. However, AEA also binds to vanilloid (VR1) receptors and induces cell death in several cell lines. Here we show that anandamide causes neuronal cell death in vitro and exacerbates cell loss caused by stretch-induced axonal injury or trophic withdrawal in rat primary neuronal cultures. Administered intracerebroventricularly, AEA causes sustained cerebral edema, as reflected by diffusion-weighted magnetic resonance imaging, regional cell loss, and impairment in long-term cognitive function. These effects are mediated, in part, through VR1 as well as through calpain-dependent mechanisms, but not through CB1 receptors or caspases. Central administration of AEA also significantly upregulates genes involved in pro-inflammatory/microglial-related responses. Thus, anandamide produces neurotoxic effects both in vitro and in vivo through multiple mechanisms independent of the CB1 receptor.Item Metadata only The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats(Academic Press Inc, 2004) Cernak, I.; Vink, R.; Zapple, D.; Cruz, M.; Ahmed, F.; Chang, T.; Fricke, S.; Faden, A.Experimental models of traumatic brain injury have been developed to replicate selected aspects of human head injury, such as contusion, concussion, and/or diffuse axonal injury. Although diffuse axonal injury is a major feature of clinical head injury, relatively few experimental models of diffuse traumatic brain injury (TBI) have been developed, particularly in smaller animals such as rodents. Here, we describe the pathophysiological consequences of moderate diffuse TBI in rats generated by a newly developed, highly controlled, and reproducible model. This model of TBI caused brain edema beginning 20 min after injury and peaking at 24 h post-trauma, as shown by wet weight/dry weight ratios and diffusion-weighted magnetic resonance imaging. Increased permeability of the blood–brain barrier was present up to 4 h post-injury as evaluated using Evans blue dye. Phosphorus magnetic resonance spectroscopy showed significant declines in brain-free magnesium concentration and reduced cytosolic phosphorylation potential at 4 h post-injury. Diffuse axonal damage was demonstrated using manganese-enhanced magnetic resonance imaging, and intracerebral injection of a fluorescent vital dye (Fluoro-Ruby) at 24-h and 7-day post-injury. Morphological evidence of apoptosis and caspase-3 activation were also found in the cerebral hemisphere and brainstem at 24 h after trauma. These results show that this model is capable of reproducing major biochemical and neurological changes of diffuse clinical TBI.