Consequences of extended maceration for red wine colour and phenolics

By
Venetia Louise Joscelyne (B. Ag. Sc. Hons.)

A thesis submitted for the degree of Doctor of Philosophy

School of Agriculture, Food and Wine
Discipline of Wine and Horticulture
The University of Adelaide

March 2009
Table of contents

List of tables and figures IV

Abbreviations VII

Abstract ... IX

Statement of authorship XI

Acknowledgements XII

Chapter 1 – Introduction and literature review

1.1 Introduction and role of maceration in red winemaking 2
1.2 Grape and wine phenolics ... 4
 1.2.1 Non-flavonoids 5
 1.2.2 Flavonoid compounds 6
 1.2.2.1 Anthocyanins and polymeric pigments 7
 1.2.2.2 Flavan-3-ol monomers 8
 1.2.2.3 Proanthocyanidins 9
1.3 Reactivity of red wine phenolic compounds .. 10
 1.3.1 Sensory properties of red wine phenolics: Relationships between phenolic structure and colour 11
 1.3.2 Sensory properties of red wine phenolics: Relationships between phenolic structure, taste and mouthfeel 15
1.4 Phenolic composition from grape to wine .. 17
 1.4.1 The influence of pomace contact on extraction: Duration of skin contact, cap management, and temperature during skin contact ... 18
 1.4.2 The influence of pomace contact on extraction: Extended maceration 20
 1.4.2.1 Pre-fermentation maceration 20
 1.4.2.2 Post-fermentation extended maceration 21
 1.4.2.3 Knowledge of the consequences of pre- and post-fermentation extended maceration for red wine 22
 1.4.3 Measurement of red wine colour and phenolic composition 24
 1.4.4 Study of pre- and post-fermentation EM of red wine made from *V. vinifera* Pinot noir ... 30
1.5 Conclusions and proposed research .. 32

Chapter 2 – Australian winemaker survey: The outcomes of extended maceration in red winemaking – winemakers’ perspectives ... 34

2.1 Introduction .. 35
2.2 Materials and methods 35
 2.2.1 Survey development and distribution 35
 2.2.2 Statistical analysis 39
2.3 Results on wine industry use and understanding of extended maceration 39
2.4 Discussion and conclusions 48
Chapter 3 – Effects of pre- and post-fermentation EM in red wine made from *V. vinifera*

Grenache

3.1 Introduction 54

3.2 Materials and methods 55

3.2.1 Experimental winemaking and wine analysis 55

3.2.2 Red wine colour and phenolic spectroscopic measures 58

3.2.3 Reversed-phase High Performance Liquid Chromatography (RP-HPLC) and Methyl Cellulose Precipitable Tannin (MCPT) assay 59

3.2.3.1 RP-HPLC analysis 59

3.2.3.2 MCPT assay 61

3.2.4 Sensory analysis 61

3.2.4.1 Triangle tests 61

3.2.4.2 Descriptive analysis 62

3.3 Results 64

3.3.1 Wine analyses 64

3.3.2 Red wine colour and phenolic spectroscopic measures 66

3.3.2.1 Colour and total phenolic measures (Somers and Folin-Ciocalteau) 66

3.3.2.2 CIE L*a*b* colour measurements 68

3.3.3 Reversed-phase HPLC and MCPT assay 70

3.3.3.1 RP-HPLC analysis of fermentation samples 70

3.3.3.2 RP-HPLC analysis of wine 78

3.3.3.3 MCPT assay 81

3.3.4 Sensory analysis 81

3.3.4.1 Triangle tests 81

3.3.4.2 Descriptive analysis 82

3.4 Discussion 85

3.4.1 Red wine colour and spectroscopic measures 85

3.4.2 Reversed-phase HPLC and MCPT assay 86

3.4.3 Sensory analysis 92

Chapter 4 – Effects of pre- and post-fermentation EM in red wine made from *V. vinifera*

Shiraz

4.1 Introduction 96

4.2 Materials and methods 97

4.2.1 Experimental winemaking and wine analysis 97

4.2.2 Red wine colour and phenolic spectroscopic measures 99

4.2.3 Reversed-phase HPLC, MCPT assay, and extraction of colour from marc 99

4.2.4 Sensory ranking tests 101

4.3 Results 102

4.3.1 Wine analyses results and discussion 102

4.3.2 Red wine colour and phenolic spectroscopic measures 103

4.3.2.1 Colour and total phenolic measures (Somers and Folin-Ciocalteau) 103

4.3.2.2 CIE L*a*b* colour measurements 105

4.3.3 Reversed-phase HPLC, MCPT assay, and extraction of colour from marc 107

4.3.3.1 RP-HPLC analysis of fermentation samples 107

4.3.3.2 RP-HPLC analysis of wine 117

4.3.3.3 MCPT assay 118

4.3.3.4 Marc extraction 119

4.3.4 Sensory ranking tests 123

4.4 Discussion 124

4.4.1 Red wine colour and phenolic spectroscopic measures 124

4.4.2 Reversed-phase HPLC, MCPT assay, and extraction of colour from marc 125

4.4.3 Sensory analysis 131
Chapter 5 - Effects of pre- and post-fermentation EM in red wine made from *V. vinifera*

5.1 Introduction
5.2 Materials and methods
5.2.1 Wine analyses
5.2.2 Red wine colour and phenolic spectroscopic measures
5.2.3 Reversed-phase HPLC and MCPT assay
5.2.4 Sensory analysis
5.2.4.1 Triangle tests
5.2.4.2 Descriptive analysis
5.3 Results
5.3.1 Wine analyses results and discussion
5.3.2 Red wine colour and phenolic spectroscopic measures
5.3.2.1 Colour and total phenolic measures (Somers and Folin-Ciocalteau)
5.3.2.2 CIE L*a*b* colour measurements
5.3.3 Reversed-phase HPLC and MCPT assay
5.3.3.1 RP-HPLC analysis of wine
5.3.3.2 MCPT assay
5.3.4 Sensory analysis
5.3.4.1 Triangle tests
5.3.4.2 Descriptive analysis
5.4 Discussion
5.4.1 Red wine colour and phenolic spectroscopic measures
5.4.2 Reversed-phase HPLC, MCPT assay and sensory analysis

Chapter 6 - Major discussion, conclusions and future perspectives

6.1 Introduction
6.2 Conclusions
6.2.1 Post-fermentation EM had the greatest effect on wine phenolic and organoleptic properties
6.2.1.1 Tannin and total phenolics
6.2.1.2 Flavan-3-ols and mouthfeel
6.2.1.3 Wine colour
6.2.2 Duration of post-fermentation EM affected Pinot noir wine phenolic properties
6.2.3 Cold soaking had no effect on wine phenolic and organoleptic properties
6.2.4 Summary of the consequences of extended maceration for red wine colour and phenolics
6.3 Industry relevance of findings
6.4 Other further research

Appendix

References
List of tables and figures

Chapter 1 – Introduction and literature review

Figure 1-1: Approximate location of extractable chemical compounds in red wine grapes 5
Figure 1-2: Structure of (+)-catechin and (−)-epicatechin ... 6
Figure 1-3: Structure of a procyanidin trimer (tannin) found in grapes .. 7
Figure 1-4: General structure of anthocyanins which occur as 3-β-glucosides in Vitis vinifera L. grapes ... 7
Figure 1-5: Activated phenol sites of phenols .. 10
Figure 1-6: Profile of phenolic extraction .. 19
Figure 1-7: Effect of time on skins during and after fermentation on phenolic properties in red wine ... 22
Figure 1-8: CIE L*a*b* colour space and the CIE L*C*h* coordinate system, developed by the International Commission on Illumination (Commission Internationale d'Eclairage) .. 27

Chapter 2 – Australian winemaker survey: The outcomes of extended maceration in red winemaking – winemakers’ perspectives

Figure 2-1: Varieties used for pre- and/or post-fermentation EM, showing also the percentage of winemakers responding to the survey that reported using each variety .. 40
Figure 2-2: The length of pre-fermentation maceration used by winemakers who utilise this extended skin contact technique .. 41
Figure 2-3: The length of post-fermentation extended maceration used by winemakers who utilise this extended skin contact technique ... 42
Figure 2-4: Percentage of winemakers who believe red wine organoleptic properties are affected by pre-fermentation maceration ... 43
Figure 2-5: Percentage of winemakers who believe red wine organoleptic properties are affected by post-fermentation extended maceration ... 43
Table 2-1: Winemakers’ opinion of the degree of effect pre-fermentation maceration and post-fermentation extended maceration has on red wine attributes .. 44
Figure 2-6: Percentage of winemakers who believe pre-fermentation maceration affects astringency ... 45
Figure 2-7: Percentage of winemakers who believe post-fermentation extended maceration affects astringency ... 45
Figure 2-8: Percentage of winemakers who believe pre-fermentation maceration affects bitterness .. 45
Figure 2-9: Percentage of winemakers who believe post-fermentation extended maceration affects bitterness .. 45
Figure 2-10: Percentage of winemakers who believe the industry knows enough about the consequences of extended maceration for red wine organoleptic properties ... 47

Chapter 3 – Effects of pre- and post-fermentation EM in red wine made from V. vinifera Grenache

Figure 3-1: Flow-chart showing differences between winemaking protocols 57
Table 3-1: Aroma and palate attribute list with agreed definitions for Grenache 63
Table 3-2: Winemaking analytical data at bottling for 2006 Grenache .. 65
Table 3-3: Additional winemaking analytical data for 2006 Grenache ... 66
Table 3-4: Spectral analyses of colour and phenolics for 2006 Grenache .. 67
Table 3-5: Spectral analyses of total phenolics and SO₂ resistant pigments for 2006 Grenache 68
Table 3-6: CIE L*a*b* colour measurements for 2006 Grenache .. 69
Figure 3-2: Malvidin-3-glucoside analysis of 2006 Grenache fermentation samples using RP-HPLC Method 2 .. 71
Figure 3-3: Petunidin-3-glucoside analysis of 2006 Grenache fermentation samples using RP-HPLC Method 2 .. 72
Chapter 4 – Effects of pre- and post-fermentation EM in red wine made from *V. vinifera* Shiraz

Table 4-1: Winemaking analytical data at bottling for 2007 Shiraz .. 102
Table 4-2: Additional winemaking analytical data for 2007 Shiraz ... 103
Table 4-3: Spectral analyses of total phenolics and SO2 resistant pigments for 2007 Shiraz 104
Table 4-4: Spectral analyses of colour and phenolics for 2007 Shiraz ... 105
Table 4-5: CIE *L*a*b* colour measurements for 2007 Shiraz ... 106
Table 4-6: Delta E values showing the visual colour differences between Shiraz wine treatments for non-pH adjusted, pH adjusted, and pH adjusted and SO2 adjusted (modified) wines.. 106
Figure 4-1: Malvidin-3-glucoside analysis of 2007 Shiraz fermentation samples using
RP-HPLC Method 2 .. 108
Figure 4-2: Delphinidin-3-glucoside analysis of 2007 Shiraz fermentation samples using
RP-HPLC Method 2 .. 109
Figure 4-3: Petunidin-3-glucoside analysis of 2007 Shiraz fermentation samples using
RP-HPLC Method 2 .. 110
Figure 4-4: Peonidin-3-glucoside analysis of 2007 Shiraz fermentation samples using
RP-HPLC Method 2 .. 111
Figure 4-5: Cyanidin-3-glucoside analysis of 2007 Shiraz fermentation samples using
RP-HPLC Method 2 .. 112
Figure 4-6: RP-HPLC analysis of (+)-catechin in the 2007 Shiraz fermentation samples 114
Figure 4-7: RP-HPLC analysis of (−)-epicatechin in the 2007 Shiraz fermentation samples 115
Figure 4-8: Pigmented polymer analysis of 2007 Shiraz fermentation samples using
RP-HPLC Method 2 .. 116
Figure 4-9: RP-HPLC analysis of tannin in the 2007 Shiraz fermentation samples 117
Table 4-7: RP-HPLC analysis of anthocyanins, (+)-catechin, (−)-epicatechin, pigmented
polymers and tannin in the 2007 Shiraz wines.. 118
Figure 4-10: MCPT assay results for Shiraz analysed 7 months post-crush 119
Figure 4-11: Ratio of the absorbance at 280 nm of the marc extraction solution to the marc
sample dry weight (%) for Shiraz treatments at selected time points during 2007 vinification .. 121
Figure 4-12: Ratio of the absorbance at 420 nm of the marc extraction solution to the marc
sample dry weight (%) for Shiraz treatments at selected time points during 2007 vinification .. 122
Chapter 5 - Effects of pre- and post-fermentation EM in red wine made from V. vinifera

Pinot noir

Table 5-1: Aroma and palate attribute list with agreed definitions for Pinot noir 138
Table 5-2: Additional winemaking analytical data for 2004 Pinot noir 139
Table 5-3: Spectral analyses of colour and phenolics for 2004 Pinot noir 140
Table 5-4: Spectral analyses of total phenolics and SO₂ resistant pigments for 2004 Pinot noir .. 141
Table 5-5: CIE L* a* b* colour measurements for 2004 Pinot noir 142
Table 5-6: RP-HPLC analysis of anthocyanins, (+)-catechin, (−)-epicatechin, pigmented polymers and tannin in the 2004 Pinot noir wines samples at selected time points after bottling .. 144
Figure 5-1: MCPT assay results for Pinot noir analysed at 35.5 months post-crush 145
Table 5-7: Triangle test results for comparisons between Pinot noir replicates 146
Table 5-8: Triangle test results for comparisons between Pinot noir treatments 146
Table 5-9: Analyses of variance ratings for sensory attributes of Pinot noir wines 147
Figure 5-2: Polar coordinate (spider plot) graph of the mean intensity rating of sensory attributes for Pinot noir wines .. 147
Figure 5-3: Principal component analysis of the mean ratings of the 13 Pinot noir wine sensory attributes ... 148

Appendix

Figure A-1: Total soluble solids (TSS), expressed as degrees Baumé, during 2006 Grenache fermentation for each replicate of each treatment .. 180
Table A-1: Standard analyses results of 2006 Grenache berry samples 180
Figure A-2: Total soluble solids (TSS), expressed as degrees Baumé, during 2007 Shiraz fermentation for each replicate of each treatment .. 181
Table A-2: Standard analyses results of 2007 Shiraz berry samples 181
Document A-1: Extended maceration survey sent to 700 Australian red winemakers 182
Document A-2: Effects of canopy exposure levels on phenolic composition, and on aroma, flavour and mouthfeel aspects of Cabernet Sauvignon and Shiraz wines 187
Document A-3: Phenolic content comparison of new and old world Pinot noir 197
Errata sheet:
Details of numbered figures that need to be deleted from the thesis titled ‘Consequences of extended maceration for red wine colour and phenolics’ by Venetia Joscelyne, because of copyright issues

Page 5
Figure 1-1: Approximate location of extractable chemical compounds in red wine grapes. Modified from Bakker and Clarke (2004)

Page 6
Figure 1-2: Structure of (+)-catechin and (−)-epicatechin. From De Freitas and Glories (1999)

Page 7
Figure 1-3: Structure of a procyanidin trimer (tannin) found in grapes. From De Freitas and Glories (1999)

Figure 1-4: General structure of anthocyanins which occur as 3-O-glucosides in Vitis vinifera L. grapes. From Saucier et al. (2004)

Page 10
Figure 1-5: Activated phenol sites of phenols. From Fulcrand et al. (2006)

Page 19
Figure 1-6: Profile of phenolic extraction (Cheynier et al. 1997b, Gonzalez-Manzano et al. 2004, Koyama et al. 2007)

Page 22
Figure 1-7: Effect of time on skins during and after fermentation on phenolic properties in red wine. Adapted from Ribéreau-Gayon and Glories (1986)

Page 27
Figure 1-8: CIE L*a*b* colour space and the CIE L*C*h° coordinate system, developed by the International Commission on Illumination (Commission Internationale d'Eclairage). From Gilchrist and Nobbs (1999)

Page 188
Document A-2: Effects of canopy exposure levels on phenolic composition, and on aroma, flavour and mouthfeel aspects of Cabernet Sauvignon and Shiraz wines

Page 198
Document A-3: Phenolic content comparison of new and old world Pinot noir
Abbreviations

a position of colour between magenta and green
ACT Australian Capital Territory
ANOVA analysis of variance
a.u. absorbance units
AWRI Australian Wine Research Institute
b position of colour between yellow and blue
BSA bovine serum albumin
C control maceration treatments
C* chroma
CIE International Commission on Illumination (Commission Internationale d’Eclairage)
CS cold soak when spoken about generally. For Grenache and Shiraz experimental wines this specifically means the pre-fermentation maceration treatments (with plunging) held at 10ºC for 3 days. For Pinot noir experimental wines this specifically means the cold soak treatment (without plunging) held at 0ºC for 3 days
CSP cold soak with plunging. For Pinot noir experimental wines this specifically means the cold soak treatment with 20 plunges once daily held at 0ºC for 3 days
DA descriptive analysis
DAP diammonium phosphate
DCMA 4-dimethyl-aminocinnamaldehyde
DF dilution factor
DW dry weight
ΔE delta E
EM extended maceration
F Friedman value
GAE gallic acid equivalents
GI Geographical Indication
GWRDC Grape and Wine Research and Development Corporation
hº hue angle
ISO International Organization for Standardization
L* degree of lightness
LAB lactic acid bacteria
MCPT methyl cellulose precipitable tannin (assay)
mDP mean degree of polymerisation
MLF malo-lactic fermentation
NSW New South Wales
NT Northern Territory
PCA principal component analysis
PMS potassium metabisulphite
PPO polyphenol oxidase
PS1 1-week post-fermentation extended maceration treatment
PS3 3-week post-fermentation extended maceration treatment
RDI regulated deficit irrigation
RP-HPLC reversed-phase high performance liquid chromatography
RS reducing sugars
RT retention time
SA South Australia
TA titratable acidity
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TSS</td>
<td>total soluble solids</td>
</tr>
<tr>
<td>VA</td>
<td>volatile acidity</td>
</tr>
<tr>
<td>VSP</td>
<td>vertical shoot positioning</td>
</tr>
<tr>
<td>WA</td>
<td>Western Australia</td>
</tr>
<tr>
<td>WCD</td>
<td>wine colour density</td>
</tr>
<tr>
<td>WCH</td>
<td>wine colour hue</td>
</tr>
</tbody>
</table>
Abstract

The consequences of pre-fermentation and post-fermentation extended maceration (EM) on colour, mouthfeel and phenolic composition were investigated in Pinot noir (2004), Grenache (2006) and Shiraz (2007) (*Vitis vinifera* L.) wines. Experimental wines were made using cold soak, post-fermentation EM, and standard fermentation treatments (C). Cold soak treatments included a 3-day cold soak at 10°C (CS), with an additional comparison of plunging effects for the 2004 wines (CSP). Post-fermentation extended maceration treatments were 1- or 3-weeks on skins in 2004 (PS1 and PS3 respectively), and 3-weeks in 2006 and 2007 (PS3). A variety of chemical and sensory test methods were used to determine changes in phenolic components and organoleptic properties between treatments of all 3 varietals as they aged in the bottle.

Among other results, it was determined if wines made with a period of cold soak had increased colour intensity, and increased concentrations of monomeric anthocyanins and pigmented polymers compared to control wines. It was also determined if wines made with a period of post-fermentation EM had increased concentrations of the flavan-3-ols (+)-catechin and (−)-epicatechin, and tannin, decreased colour intensity and modified mouthfeel compared to the other wine treatments.

A greater understanding of Australian red winemakers’ opinions on EM regimes and their use in Australian wineries was obtained by survey. Survey results confirmed that EM is used extensively in Australian wineries but that winemakers have poor understanding of the consequences of EM regimes for red wine properties. The survey confirmed that winemakers are concerned about the economic cost and logistic pressures associated with the use of EM regimes during vintage. Wines made using EM need to spend longer in fermentation vessels, which are in high demand during this time. Findings from this study provide winemakers with more information to consider before making decisions about their use of EM regimes.

Survey findings showed more winemakers would use EM regimes if logistic and economic pressures did not apply. However, results suggest that even if winemakers did adopt EM practices, some may not achieve what they believe to be the outcome of these regimes, such as improved colour or mouthfeel properties. For instance, results showed that cold soaking did not make a difference to wine colour compared to conventional fermentation maceration. Even without cold soaking red must, winemakers may be able to achieve the
same or very similar wine organoleptic characteristics at a reduced cost. Similarly, no significant effects of plunging during cold soak were observed.

Post-fermentation EM visibly reduced wine colour intensity and imparted a browner hue to the wine compared to red wine that was pressed off skins upon reaching dryness. This EM regime is therefore unlikely to benefit winemakers who are seeking to produce highly coloured wines. However, prolonged maceration post-fermentation did increase the intensity of perceived bitterness and increased the concentration of wine flavan-3-ols and tannins. Winemakers may therefore influence the desired balance between the extraction of these wine phenolics (and the associated outcome for taste and mouthfeel properties) and economic considerations by varying the duration of maceration post-fermentation.
Statement of authorship

This work contains no material which has been accepted for the award of any other degree of diploma in any university or any other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Venetia L. Joscelyne
Acknowledgements

I would like to sincerely thank my primary supervisor, Chris Ford, for his guidance, humour and support. Thanks also to my co-supervisors, Graham Jones, Markus Herderich, and particularly Sue Bastian for her enthusiasm and encouragement.

Thank you to the University of Adelaide for the F.J. Sandoz Scholarship, and to the GWRDC for this project’s financial support.

Thank you to my colleagues, particularly Caroline Payne and Vanessa Melino. For their assistance with RP-HPLC, thank you to Tricia Franks and Nicole Cordon.

Thank you to Henry Vaughan, Martin Day, Heath Stafford and Rachel Rose for their vintage and laboratory assistance. Thank you also to Stephen Clarke, John Sitters, Paul Grbin, Chris Day, Kyle Knott and Tony Zuppa.

Thank you to the other members of the AWRI Tannin Team: Paul Smith, Meagan Mercurio, David Jeffrey, Helen Holt for their advice and assistance.

Thank you to Robert van Zanten for his assistance with the survey design.

Very special thanks must go to my aunty, Merrilyn Heazlewood, for her unwavering support and love, and to my grandparents, Beverley and Ivan Heazlewood. To my husband, Will, thank you for putting up with the real estate agents in Eastwood, and the emos in Hyde Park. Your family has been an incredible source of support and encouragement too. Cynthia, your emails all the way from Papua New Guinea kept me going!