MODELLING OF CO₂ AND GREEN-HOUSE GASES (GHG) MISCIBILITY AND INTERACTIONS WITH OIL TO ENHANCE THE OIL RECOVERY IN GAS FLOODING PROCESSES

By
Mohammed Kamal Emera

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Australian School of Petroleum
The University of Adelaide, Australia

Adelaide, Australia
March 2006
MODELLING OF CO\textsubscript{2} AND GREEN-HOUSE GASES (GHG) MISCIBILITY AND INTERACTIONS WITH OIL TO ENHANCE THE OIL RECOVERY IN GAS FLOODING PROCESSES

By
Mohammed Kamal Emera

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Principal Supervisor
Prof. Hemanta Sarma, PhD, P. Eng.
Professor & Reg Sprigg Chair in Petroleum Engineering
Centre for Improved Petroleum Recovery (CIPR)
Post-Graduate Co-ordinator for Pet. Eng. & Mgmt.
Research Project Leader, Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC)
Australian School of Petroleum,
The University of Adelaide, Australia

Co-Supervisor
Seung Ihl Kam, PhD
Lecturer
Australian School of Petroleum,
The University of Adelaide, Australia

Adelaide, Australia
March 2006
To my father

To my mother

To my son (Ahmed)

To my wife, my brothers, and my sisters

To Prof. Hemanta Sarma

To Prof. Helmy Sayyouh

To Prof. Saad Eid

To all my family, friends, and professors
I feel privileged to have **Prof. Hemanta Sarma** as my principal supervisor on this research. I have been deeply educated from his professional experience and his outstanding kind personality. I appreciate all what he has done for me professionally and personally. Prof. Sarma is not only my supervisor but also he is a kind friend and well wisher. He always a good listener for me and for my problems even the personal problems. I cannot find how I can reward him but I will keep all what he has kindly done for me for all my life. Generally, he is one of the few people who have positively affected my life very much. I am deeply thankful to him for his support through these years. Also, I wish him all the best for his life, his career, and for his family especially his wife and his lovely daughter. In addition, I am deeply thankful to **Dr. Seung Kam**, my co-supervisor for all of his advices and support. Dr. Kam is a very nice, helpful, and knowledgeable person.

I appreciate the kind financial support from Santos International Scholarship, without which, I could not have come to Australia and work on my PhD in The University of Adelaide. I am also deeply thankful to Santos Ltd company for giving me and my colleagues in the Centre of Improved Petroleum Recovery (CIPR), Australian School of Petroleum (ASP), The University of Adelaide, the opportunity to present our work yearly in Santos Ltd. I received very constructive feedback from Santos professionals, which I appreciate. I am also very appreciative for the financial support from the CIPR to present my research results in the 13th European Symposium of Improved Oil Recovery, Budapest, 2005 and in the Canadian International Petroleum Conference, Calgary, 2005. These presentations helped me to interact with other workers in the area.

I also thank the ASP academic staff, especially **Prof. Ashok Khurana** for his support and help. Also, I appreciate the help and support of the administration staff especially, **Janet Hart, Maureen Sutton, Yvonne Philp**, and **Ian west**. I am very thankful to all of them for their support and help during my study.
Furthermore, I have to thank **Prof. Helmy Sayyouh**, Cairo University, Egypt for his continuous support and encouragement. He is invaluable as a father and professor. Also, I appreciate the support and encouragement of **Prof. Abdelsatar Dahab**. He is invaluable friend and professor. I also have to thank **Prof. Saad Eid, Prof. Abdelwaly Abdallah** for their support and help during my master degree. I appreciate all what they have done for me and I am deeply thankful to their support and help. I also cannot forget my brother, friend, and supervisor during my master, **Dr. Eissa Shokir**. He is always invaluable person and friend for me and I am deeply thankful to him for his support and help. I am also very thankful to **Prof. Mohammed Abdeldaem, Prof. Yosry Asaad, Prof. Fouad Khalf, Prof. Gharib Hamada, Dr. Ahmed El banbi, Dr. Sayed El Taib**, and all the staff in the Petroleum Engineering Department, Cairo University, Egypt for their support, advices, and help. They are also invaluable brothers and professors.

I am also very thankfully to my colleagues, **Jan, Mansoor, Hussam, Kindi, Rahul, Zulfi, Vinod, Otto**, and **Helen** for the nice discussions and support, which I enjoyed. I spent a very good time with them in Adelaide, Australia. In addition, I am very thankfully to my colleagues and my friends from Cairo University, **Mohammed Al-Ahmady, Ahmed Daoud, Mohammed Ali**, and **Khaled El-Sherif**.

I am profoundly grateful to my **father**, my **mother**, my **son** (Ahmed), my **wife**, my **brothers**, and my **sisters**. Their loving encouragement and support was very important. They always give me love and unconditional support throughout my life (especially my **father** and my **mother**). All what I try to do in my life is for them and I dream of the day when I will be able to reward them as I wish.
Abstract

1. Objective

The objective of this research has been to develop more reliable models to predict the miscibility and interactions between CO$_2$ or green-house gas (GHG) and oil (dead and live oils) over a wider range of conditions, based on data from different site sources, considering all the major variables affecting each modelled parameter, and for different injected gas compositions. The Genetic algorithm (GA), an artificial intelligence technique based on the Darwinian theory of evolution that mimics some of the natural processes in living organisms, was used to develop these models, based on GA software that has been developed in this work (as a modelling technique). While applications of GA have been used recently in the mathematical and computer sciences, its applications in the petroleum engineering, especially EOR research, have been limited.

2. Motivation to Investigate the Potential of GA-based Models

The detrimental effects of CO$_2$ and/or GHG emissions from various industrial and human-activity sources on the environment are a major concern worldwide. This has resulted in an intensive global R&D effort to lower or mitigate the damaging impact of GHG on the environment. One potentially attractive and effective means of lowering the GHG emissions could be to capture them from their major sources of emissions and then sequester them in depleted oil and gas reservoirs while also enhancing oil recovery.

Typically, a GHG stream, also referred to as “flue gas”, contains high percentages of CO$_2$ in addition to other gases, notably, N$_2$, NO$_x$ and SO$_x$. The presence of high CO$_2$ content in the flue gas, in particular, could make this option potentially viable, provided the miscibility and interaction properties between the injected gas and reservoir fluids are favorable. Therefore, it is critical to ascertain the likely miscibility and interactions parameters between the injected gas (CO$_2$ or flue gas) and oil at different conditions to
determine the optimal miscibility and interaction conditions that contribute to oil viscosity reduction and oil swelling. They in turn enhance oil recovery through improved gas flooding process performance due to higher oil mobility, volumetric sweep efficiency, and relative permeability to oil.

Often miscibility and interactions between injected gases and oils are established through “experimental methods”, “new mathematical models” based on phase equilibria data and equations of state (EOS), and available “published models”. Experimental methods are time-consuming and costly. Moreover, they can handle only limited conditions. Mathematical models require availability of a considerable amount of reservoir fluid composition data, which may not be available most of the time. Although, the published models are simpler and faster to use, one must however recognise that most of these models were developed and validated based on limited data ranges from site-specific conditions. Therefore, their applications cannot be generic. Another noteworthy point is that most of the interactions models have been developed using dead oil data and pure CO$_2$ as an injected gas. Hence, they do not perform well for a wider range of live oils, as well as injected flue gases, which contain different components besides CO$_2$.

Consequently, there is a need to have more reliable miscibility and interaction models, which can handle a much wider range of conditions and different data sources. Also, these models should be able to consider all the major variables, different injected gas compositions, and live oil in addition to dead oil.

3. GA-based Models Developed in This Research

- **GA-based model for more reliable prediction of minimum miscibility pressure (MMP) between reservoir oil and CO$_2$:** This model recognised the major variables affecting MMP (reservoir temperature, MW$_{C5+}$, and volatiles and intermediates compositions). It has been successfully validated with published experimental data and compared to common models in the literature. It is noted that GA-based CO$_2$-oil MMP offered the best match with the lowest error and standard deviation.

- **GA-based flue gas-oil MMP model:** For this model, the MMP was regarded as a function of the injected gas solubility into oil, which in turn is related to the injected gas critical properties (pseudocritical temperature and pressure) besides reservoir temperature and oil composition. A critical temperature modification factor was also used in developing this model. The GA-based model has also been successfully validated against published experimental data and compared to several models in the literature. It yielded the best match with the lowest average error and standard
deviation. Moreover, unlike other models, it can be used more reliably for gases with higher N₂ (up to 20 mole%) and different non-CO₂ components (e.g., H₂S, N₂, SOₓ, O₂, and C₁-C₄) with higher ratio (up to 78 mole%).

- **GA-based CO₂-oil physical properties models**: These models have been developed to predict CO₂ solubility, impact on the oil swelling factor, CO₂-oil density, and CO₂-oil viscosity for both dead and live oils. These models recognised the major variables that affect each physical property and also properly address the effects of CO₂ liquefaction pressure and oil molecular weight (MW). These models have been successfully validated with published experimental data and have been compared against several widely used models. The GA-based CO₂-oil properties models yielded more accurate predictions with lower errors than other models that have been tested. Furthermore, unlike the other tested models, which are applicable to only limited data ranges and conditions, GA-based models can be applied over a wider data range and conditions.

- **GA-based flue gas-oil physical properties models**: These models predict flue gas-oil properties such as, flue gas solubility, impact on the oil swelling factor, and flue gas-oil density and viscosity while recognising all the major variables affecting each property. Also, the GA-based models recognised the different injected flue gas compositions. These models have been successfully validated with published experimental data and have also been compared against other commonly reported CO₂-oil models, which are often used for flue gas-oil physical properties prediction. The GA-based models consistently yielded a lower prediction error than the models that have been tested. Furthermore, unlike other models, which are applicable only over limited data ranges and conditions, GA-based models can be valid over a wider range of data under various conditions.

All the above-mentioned models, developed in this research, are particularly useful when experimental data are lacking and the project financial situation is a concern. In addition, these models can be useful as a fast track gas flooding project screening guide. Also, they can easily be incorporated into a reservoir simulator for CO₂ or flue gas flooding design and simulation. Furthermore, they can serve as yet another useful tool to design optimal and economical experimental test protocols to determine the miscibility and interactions between the injected CO₂ or flue gas and oils in gas flooding processes.
Publications and Awards Based on This Research
(2003-2006)

The following are the awards I have received and papers I have authored and/or co-authored based on my PhD research at The University of Adelaide, Australia:

1. Scholarships and Awards
 - Santos Ltd International Post-Graduate Scholarship, Australia, 2003-2006.

2. Publications:
 - Refereed Journal Papers

- **Refereed Journal Papers (passed the pre-screening for publications in the specified journals)**

- **Papers Submitted to Refereed Journals**

- **Conference Papers**

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma at any university or any tertiary institution and, to best of my knowledge and believe, this thesis contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Signed………………………………………………. Date……………………………..
Table of Contents

ACKNOWLEDGEMENTS ... I
ABSTRACT .. III
PUBLICATIONS AND AWARDS .. VI
STATEMENT OF ORIGINALITY ... IX
TABLE OF CONTENTS ... X
LIST OF FIGURES .. XV
LIST OF TABLES .. XIX
NOMENCLATURE .. XXII

CHAPTER-1: INTRODUCTION ... 1
 1.1. Introduction ... 1
 1.2. Motivation to Investigate the Potential of GA-Based Models 3

CHAPTER-2: RESEARCH OBJECTIVE AND THESIS OVERVIEW 5
 2.1. Introduction ... 5
 2.2. Research Objective ... 5
 2.3. Thesis Overview ... 6

CHAPTER-3: LITERATURE REVIEW-1: MODELLING OF THE MISCIBILITY AND INTERACTIONS BETWEEN CO\textsubscript{2} OR FLUE GAS AND OIL IN GAS FLOODING PROCESSES .. 7
 3.1. Introduction ... 7
 3.2. Modelling of CO\textsubscript{2}-Oil MMP and Flue Gas-Oil MMP 8
 3.2.1. CO\textsubscript{2}-Oil MMP ... 9
 3.2.2. Flue Gas-Oil MMP ... 9
 3.3. Modelling of CO\textsubscript{2}-Oil Physical Properties .. 19
 3.3.1. CO\textsubscript{2} Solubility .. 19
 3.3.2. Oil Swelling Factor Due to CO\textsubscript{2} Injection 20
 3.3.3. CO\textsubscript{2}-Oil Density ... 20
 3.3.4. CO\textsubscript{2}-Oil Viscosity ... 20
3.4. Modelling of Flue Gas-Oil Physical Properties
- **3.4.1. Flue Gas-Oil Solubility**
- **3.4.2. Oil Swelling Factor Due to Flue Gas Injection**
- **3.4.3. Flue Gas-Oil Density**
- **3.4.4. Flue Gas-Oil Viscosity**

3.5. Summary

CHAPTER-4: LITERATURE REVIEW-2: GENETIC ALGORITHM (GA)-ONE OF THE ARTIFICIAL INTELLIGENCE TECHNIQUES
- **4.1. Introduction**
- **4.2. What is the GA?**
- **4.3. The Advantages of the GA**
- **4.4. The GA Tool Description**
 - **4.4.1. Initial Population**
 - **4.4.2. Evaluation**
 - **4.4.3. Selection Techniques**
 - **4.4.3.1. Roulette Wheel Parent Technique**
 - **4.4.3.2. Tournament Technique**
 - **4.4.3.3. Scaling Selection**
 - **4.4.3.4. Elitist Selection**
 - **4.4.3.5. Rank Selection**
 - **4.4.3.6. Generational Selection**
 - **4.4.3.7. Steady State Selection**
 - **4.4.3.8. Hierarchical Selection**
 - **4.4.4. Reproduction Operators**
 - **4.4.4.1. Crossover**
 - **4.4.4.1.1. One-Point Crossover**
 - **4.4.4.1.2. Two-Points Crossover**
 - **4.4.4.1.3. Uniform Crossover**
 - **4.4.4.2. Mutation**
 - **4.4.4.3. Deletion**
 - **4.4.4.3.1. Generation Replacement**
 - **4.4.4.3.2. Steady State Replacement**
 - **4.4.4.3.3. Steady State Without Duplicates**
 - **4.4.4.4. Inversion Operator**
- **4.5. Performance Enhancement of The GA Tool**
Appendix-1: CO₂-Oil MMP Experimental Data Validation
Appendix -2: Flue Gas-Oil MMP Experimental Data Validation
Appendix -3: CO₂ Solubility Experimental Data Validation
Appendix -4: Oil Swelling Factor (Due to CO₂) Experimental Data
Appendix -5: CO₂-Oil Density Experimental Data Validation
Appendix -6: CO₂-Oil Viscosity Experimental Data Validation
Appendix -7: Flue Gas Solubility Experimental Data Validation
Appendix -8: Oil Swelling Factor (Due to Flue Gas) Experimental Data
Appendix -9: Flue Gas-Oil Density Experimental Data Validation
Appendix -10: Flue Gas-Oil Viscosity Experimental Data Validation
Appendix -11: The GA Software Code
List of Figures

Fig. 1-1. CO₂ multi-contact miscibility process (after Jarrell et al. (2002))…………. 2

Fig. 4-1. A standard flow chart of the GA (after Cvetkovic (2000) and Mostafa (2000))……………………………………………………………………………….. 35

Fig. 4-2. The parameter encoding methods on the GA chromosome (After Abourayya (2001) and Marczyk (2004))……………………………………………… 36

Fig. 4-3. Roulette wheel showing the proportional of each chromosome slice area with its fitness value (after Abourayya (2001))……………………………………… 38

Fig. 4-4. One-point crossover operator example (after Marczyk (2004) and Cunha (1999))……………………………………………………………………………….. 40

Fig. 4-5. Two-points crossover operator example (after Davis (1991) and Cunha (1999))……………………………………………………………………………….. 41

Fig. 4-6. Uniform crossover operator example (after Cunha (1999))……….. 42

Fig. 4-7. Mutation operator example (after Cunha (1999))……….. 43

Fig. 4-8. Inversion operator example (after Cunha (1999))……….. 44

Fig. 5-1. Flowchart of the developed GA software design……….. 51

Fig. 6-1. GA-based CO₂-oil MMP model prediction results within 90 % accuracy.. 59

Fig. 6-2. Comparison between GA-based CO₂-oil MMP model, Alston et al. (1985), and Glaso (1985) models results within 90% accuracy…………………………. 60

Fig. 6-3. Sensitivity analysis presents effect of each parameter (T_R, MW_{C5+}, volatiles, and intermediates) on the CO₂-oil MMP………………………………………….. 61

Fig. 6-4. GA-based flue gas-oil MMP model prediction results within 90 % accuracy……………………………………………………………………………………. 67

Fig. 6-5. Comparison between the GA-based flue gas-oil MMP model, Alston et al. (1985), and Sebastian et al. (1985) models results within 95% accuracy……. 67

Fig. 6-6. Comparison between the GA-based flue gas-oil MMP, Alston et al.
(1985), and Sebastian et al. (1985) models within 95% accuracy for all the data except the identified data point within the ellipse in Fig. 6-5 (composed of 80 mole% of CO₂ and 20 mole% of N₂)…………………………………………………………… 68

Fig. 6-7. Sensitivity analysis presents the effect of each parameter (\(T_{CW}/T_{C, CO₂}\) and \(P_{CW, flue \ gas}/P_{C, CO₂}\)) on the MMP ratio (flue gas-oil MMP/CO₂-oil MMP)……………… 69

Fig. 6-8. The relationship between reduced MMPs ratio (reduced flue gas-oil MMP to reduced CO₂ oil MMP) and the weight average pseudocritical temperature before using the critical temperature modification factor (MF)……….. 70

Fig. 6-9. The relationship between reduced MMPs ratio (reduced flue gas-oil MMP to reduced CO₂-oil MMP) and the weight average pseudocritical temperature after using the critical temperature modification factor (MF)……….. 70

Fig. 7-1. Sensitivity analysis of the factors affecting CO₂ solubility in dead oil…... 75

Fig. 7-2. GA-based CO₂ solubility in dead oil model prediction results…………… 76

Fig. 7-3. Comparison results between the GA-based CO₂ solubility in dead oil, Simon and Graue (1965), and Mehrotra and Svrcek (1982) models……………… 76

Fig. 7-4. Sensitivity analysis of the factors affecting CO₂ solubility in live oil……… 79

Fig. 7-5. GA-based CO₂ solubility in live oil model prediction results……………… 79

Fig. 7-6. Comparison results between the GA-based CO₂ solubility in live oil, Simon and Graue (1965), and Mehrotra and Svrcek (1982) models……………… 80

Fig. 7-7. Sensitivity analysis of the factors affecting dead and live oil swelling factor (due to CO₂) for oils with MW ≥300…………………………………………………………... 82

Fig. 7-8. Sensitivity analysis of the factors affecting dead and live oil swelling factor (due to CO₂) for oils with MW <300…………………………………………………………... 82

Fig. 7-9. GA-based oil swelling factor (due to CO₂) model prediction results for dead oil………………………………………………………………………………….. 83

Fig. 7-10. Comparison results between the GA-based and Simon and Graue (1965) oil swelling factor (due to CO₂) models prediction results for dead oil……….. 84

Fig. 7-11. GA-based oil swelling factor (due to CO₂) model prediction results for live oil……………………………………………………………………………………………………….. 85

Fig. 7-12. Comparison results between the GA-based and Simon and Graue (1965) oil swelling factor (due to CO₂) models prediction results for live oil……….. 86

Fig. 7-13. Sensitivity analysis of the factors affecting CO₂-oil (dead and live oil) density……….. 88

Fig. 7-14. GA-based CO₂-oil density model prediction results for CO₂-dead oil density……….. 88
Fig. 7-15. Comparison results between the GA-based and Quail et al. (1988) CO₂-oil density models prediction results for CO₂-dead oil density…………………………………… 89
Fig. 7-16. GA-based CO₂-oil density model prediction results for CO₂-live oil density……………………………………………………………………………………………… 90
Fig. 7-17. Comparison results between the GA-based and Quail et al. (1988) CO₂-oil density models prediction results for CO₂-live oil density…………………… 91
Fig. 7-18. Sensitivity analysis of the factors affecting dead oil viscosity reduction due to CO₂ injection……………………………………………………………………………… 93
Fig. 7-19. Sensitivity analysis of the factors affecting live oil viscosity reduction due to CO₂ injection………………………………………………………………………… 94
Fig. 7-20. GA-based CO₂-dead oil viscosity model prediction results…… 94
Fig. 7-21. Comparison results between the GA-based and Beggs and Robinson (1975) CO₂-dead oil viscosity models…………………………………………………… 95
Fig. 7-22. GA-based CO₂-live oil viscosity model prediction results…… 96
Fig. 7-23. Comparison results between the GA-based and Beggs and Robinson (1975) CO₂-live oil viscosity models…………………………………………………… 97
Fig. 7-24. Sensitivity analysis of the factors affecting flue gas solubility in dead oil……………………………………………………………………………………………… 101
Fig. 7-25. Sensitivity analysis of the factors affecting flue gas solubility in live oil……………………………………………………………………………………………… 103
Fig. 7-26. GA-based flue gas solubility models prediction results for dead and live oils……………………………………………………………………………………………… 103
Fig. 7-27. Comparison results among the GA-based flue gas solubility in oil (dead and live oils), Simon and Graue (1965), Chung et al. (1986), and Mehrotra and Svrcek (1982) models…………………………………………………………………………………………… 104
Fig. 7-28. Sensitivity analysis of the factors affecting dead and live oils swelling factor for oils with MW≥300…………………………………………………………………… 105
Fig. 7-29. Sensitivity analysis of the factors affecting dead and live oils swelling factor for oils with MW<300………………………………………………………………… 106
Fig. 7-30. GA-based oil swelling factor (due to flue gas) model prediction results (for dead and live oils)……………………………………………………………………………………………… 107
Fig. 7-31. Comparison results between the GA-based and Simon and Graue (1965) oil swelling factor (due to flue gas) models (for dead and live oils)………………………… 107
Fig. 7-32. Sensitivity analysis of the factors affecting flue gas-oil (dead and live oils) density………………………………………………………………………………………… 108
Fig. 7-33. GA-based flue gas-oil density model prediction results…… 110
Fig. 7-34. Comparison results between the GA-based and Quail et al. (1988) flue gas-oil density models……………………………………………………………………………… 110

Fig. 7-35. Sensitivity analysis of the factors affecting dead oil viscosity reduction due to flue gas injection……………………………………………………………………………… 112

Fig. 7-36. Sensitivity analysis of the factors affecting live oil viscosity reduction due to flue gas injection……………………………………………………………………………… 113

Fig. 7-37. GA-based flue gas-oil (dead and live oils) viscosity model prediction results…………………………………………………………………………………………… 113

Fig. 7-38. Comparison results between GA-based and Beggs and Robinson (1975) flue gas-oil (dead and live oils) viscosity models………………………………………………… 114
List of Tables

Table 3-1. Commonly used CO$_2$-oil MMP and flue gas-oil MMP models.............. 11

Table 3-2. Commonly used models of CO$_2$ solubility, oil swelling factor, and CO$_2$-oil density and viscosity... 23

Table 6-1. Comparison between the GA-based CO$_2$-oil MMP model and other commonly used literature models... 59

Table 6-2. Data range used to develop and validate of the GA-based CO$_2$-oil MMP model.. 60

Table 6-3. Comparison between the GA-based flue gas-oil MMP model and other commonly used literature models for all the data... 66

Table 6-4. Comparison between the GA-based flue gas-oil MMP model and other commonly used models for all the data except the identified data point within the ellipse in Fig. 6-5 (composed of 80 mole% of CO$_2$ and 20 mole% of N$_2$)............ 68

Table 6-5. Data range used to develop and validate of the GA-based flue gas-oil MMP model.. 69

Table 7-1. Comparison between the GA-based CO$_2$ solubility in dead oil model and other CO$_2$ solubility literature models... 75

Table 7-2. Experimental data range used in this study for developing and testing of the GA-based CO$_2$ solubility in dead oil model.. 77

Table 7-3. Comparison between the GA-based CO$_2$ solubility in live oil and other CO$_2$ solubility literature models... 78

Table 7-4. Experimental data range used in this study for developing and testing of the GA-based CO$_2$ solubility in live oil model.. 80

Table 7-5. Comparison between the GA-based and Simon and Graue (1965) oil swelling models prediction results for dead oil... 83

Table 7-6. Experimental data range used in this study for developing and testing
Table 7-7. Comparison between the GA-based and Simon and Graue (1965) oil swelling models prediction results for live oil.

Table 7-8. Experimental data range used in this study for developing and testing of the GA-based oil swelling factor (due to CO₂) model for live oil.

Table 7-9. Comparison between the GA-based and Quail et al. (1988) models results for the CO₂-dead oil density prediction.

Table 7-10. Experimental data range used in this study for developing and testing of the GA-based CO₂-oil density model for CO₂-dead oil density.

Table 7-11. Comparison between the GA-based and Quail et al. (1988) CO₂-oil density models prediction results for CO₂-live oil density.

Table 7-12. Experimental data range used in this study for developing and testing of the GA-based CO₂-oil density model for CO₂-live oil density.

Table 7-13. Comparison between the GA-based and other CO₂-dead oil viscosity literature models.

Table 7-14. Experimental data range used in this study for developing and testing of CO₂-dead oil viscosity model.

Table 7-15. Comparison between the GA-based and other CO₂-live oil viscosity literature models.

Table 7-16. Experimental data range used in this study for developing and testing of the CO₂-live oil viscosity model.

Table 7-17. Comparison between the GA-based flue gas solubility in oil (dead and live oils) and other literature solubility models.

Table 7-18. Experimental data range used in this study for developing and testing of the flue gas solubility (in dead and live oils) models.

Table 7-19. Comparison between the GA-based model and Simon and Graue (1965) oil swelling factor models (for dead and live oils).

Table 7-20. Experimental data range used in this study for testing of the GA-based oil (dead and live oils) swelling factor (due to flue gas) model.

Table 7-21. Comparison between the GA-based model and Quail et al. (1988) model for the flue gas-oil density prediction.

Table 7-22. Experimental data range used in this study for testing of the GA-based flue gas-oil (dead and live oils) density model.

Table 7-23. Comparison between the GA-based model and other flue gas-oil viscosity literature models.
Table 7-24. Experimental data range used in this study for developing and testing of the GA-based flue gas-oil (dead and live oils) viscosity model.

Table A-1-1. Experimental data from the literature used for developing and testing of the CO$_2$-oil MMP model.

Table A-1-2. The GA-based CO$_2$-oil MMP model prediction results and comparison between its accuracy and other commonly used models accuracy.

Table A-2-1. Literature experimental data used for developing and testing of the GA-based flue gas-oil MMP model and the model prediction results.

Table A-2-2. Comparison among the GA-based model accuracy and that of other models to predict flue gas-oil MMP.

Table A-3-1. Experimental data used for developing and testing of the GA-based CO$_2$ solubility in dead oil model and the model prediction results.

Table A-3-2. Experimental data used for developing and testing of the GA-based CO$_2$ solubility in live oil model and the model prediction results.

Table A-4-1. Experimental data used for developing of the GA-based oil swelling factor (due to CO$_2$) model and testing of this model for dead oil swelling data.

Table A-4-2. Experimental data used for testing of the GA-based oil swelling factor (due to CO$_2$) model for the live oil swelling factor data.

Table A-5-1. Experimental data used for developing of the GA-based CO$_2$-oil density model and testing of this model for CO$_2$-dead oil density data.

Table A-5-2. Experimental data used for testing of the GA-based CO$_2$-oil density model for CO$_2$-live oil density data.

Table A-6-1. Experimental data used for developing and testing of the GA-based CO$_2$-dead oil viscosity model and the model prediction results.

Table A-6-2. Experimental data used for developing and testing of the GA-based CO$_2$-live oil viscosity model and the model prediction results.

Table A-7-1. Experimental data used for developing and testing of the GA-based flue gas solubility in dead and live oils models and the models prediction results.

Table A-8-1. Experimental data used for testing of the GA-based oil (dead and live oils) swelling factor model for oil swelling factor (due to flue gas injection) data.

Table A-9-1. Experimental data used for testing of the GA-based gas-oil mixture density model for flue gas-oil (dead and live oils) density data.

Table A-10-1. Experimental data used for developing and testing of the GA-based flue gas-oil viscosity models and the models prediction results.
Nomenclature

α
Empirical parameter presented as a function of density and temperature and can be obtained by fitting the experimental data

β
Mutation factor (0-1)

γ
Oil specific gravity (oil density at 15.56°C), γ_o
Oil gravity, °API

Δ
Difference operator

ΔP
Additional pressure, MPa

ξ
Viscosity parameter of a mixture

θ
Ratio between gas volume at standard conditions to the volume at system T and P

λ
Mutation factor (0-1)

µ
Gas (CO₂ or flue gas)-oil viscosity, mPa.s

µ*
Viscosity of a gas mixture at low pressure, mPa.s

µ_d
Viscosity of dead oil at the specified temperature, mPa.s

µ_i
Initial oil viscosity at the specified temperature, mPa.s

µ_j*
Viscosity of component j as a gas at low pressure, mPa.s

µ_m
Mixture viscosity, mPa.s

µ_o
Oil viscosity, mPa.s

µ_s
Solvent viscosity, mPa.s

ρ
Gas (CO₂ or flue gas)-oil density, g/cm³

ρ_c'/
Pseudocritical density of a mixture, g/cm³

ρ_i
Initial oil density at the specified temperature, g/cm³

ρ_MMP
CO₂ density at the MMP, g/cm³

ρ_r
Reduced density, fraction

Σ
Sum operator
ANN Artificial Neural Network
API Oil gravity °API
Av. Average
B Ratio between oil volume at system T, and 1 atm to the volume at system T and P
b Characterization parameter obtained by measuring the viscosity of the oil at 30° C and 1 atm. (μ₃₀)
B₀ Oil expansion factor
C_g GA evaluation constant = 1.0 for gas (CO₂ or flue gas) solubility, oil swelling factor, and gas (CO₂ or flue gas)-oil density models and =100 for gas (CO₂ or flue gas)-oil viscosity models and =5000 for MMP models
C_i Carbon number
Dev. Deviation (error), %
EOS Equation of state
exp Exponential factor
Exp. Experimental
F Weighting composition parameter
F_{impure} Impurity correction factor
Fit (i) Average fitness of chromosome i, where the chromosome has many fitness values based on the number of data available (j)
F_R Mole percentage of C₂ through C₆ in the reservoir fluid, %
GA Genetic algorithm
GHG Green-house gas
I Oil characterization index
Interm. Intermediates components, C₁-C₄, H₂S, and CO₂, fraction
K_i Normalized partition coefficient for carbon number i
m Exponent
MF_i Critical temperature modification factor of injected gas component i
M_{inj} Molecular weight of the injected gas
M_j Molecular weight of gas component j
MMP Gas-oil Minimum Miscibility Pressure, MPa
MMP_{CO2} CO₂-oil Minimum Miscibility Pressure, MPa
MMP_{flue gas} Flue gas-oil Minimum Miscibility Pressure, MPa
MW Average molecular weight of the oil
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW_{C5+}</td>
<td>Molecular weight of the C_{5+} components</td>
</tr>
<tr>
<td>MW_{C7+}</td>
<td>Molecular weight of the C_{7+} components</td>
</tr>
<tr>
<td>MW_{CO2}</td>
<td>CO_{2} molecular weight</td>
</tr>
<tr>
<td>MW_{flue gas}</td>
<td>Flue gas molecular weight</td>
</tr>
<tr>
<td>MW_{i}</td>
<td>Molecular weight of component i</td>
</tr>
<tr>
<td>n</td>
<td>Non-CO_{2} components, components, or the GA population size</td>
</tr>
<tr>
<td>nn</td>
<td>Number of available data points</td>
</tr>
<tr>
<td>NPV</td>
<td>Net present value</td>
</tr>
<tr>
<td>P (c)</td>
<td>Crossover probability</td>
</tr>
<tr>
<td>P (m)</td>
<td>Mutation probability</td>
</tr>
<tr>
<td>P_{b}</td>
<td>Bubble point pressure, MPa</td>
</tr>
<tr>
<td>P_{c}</td>
<td>Gas critical pressure, MPa</td>
</tr>
<tr>
<td>P_{C, CO2}</td>
<td>CO_{2} critical pressure, MPa</td>
</tr>
<tr>
<td>P_{C, inj.}</td>
<td>Injection gas critical pressure, MPa</td>
</tr>
<tr>
<td>P_{Ci}</td>
<td>Critical pressure of the gas component i, MPa</td>
</tr>
<tr>
<td>P_{cj}</td>
<td>Critical pressure of component j</td>
</tr>
<tr>
<td>P_{cm}</td>
<td>Mole average pseudocritical pressure, MPa</td>
</tr>
<tr>
<td>P_{CW}</td>
<td>Weight average pseudocritical pressure, MPa</td>
</tr>
<tr>
<td>pen</td>
<td>GA penalty value</td>
</tr>
<tr>
<td>P_{fit(i,j)}</td>
<td>Fitness function of data number j of chromosome i, fraction</td>
</tr>
<tr>
<td>P_{liq}</td>
<td>Gas (CO_{2} or flue gas) liquefaction pressure at the specified temperature, MPa</td>
</tr>
<tr>
<td>P_{pc}</td>
<td>Flue gas weight average pseudocritical pressure, MPa</td>
</tr>
<tr>
<td>P_{r, CO2}</td>
<td>Reduced CO_{2}-oil MMP, fraction</td>
</tr>
<tr>
<td>P_{r, flue gas}</td>
<td>Reduced flue gas-oil MMP, fraction</td>
</tr>
<tr>
<td>PR-EOS</td>
<td>Peng-Robinson equation of state</td>
</tr>
<tr>
<td>P_{s}</td>
<td>Saturation pressure, MPa</td>
</tr>
<tr>
<td>PV</td>
<td>Pore volume</td>
</tr>
<tr>
<td>RBA</td>
<td>Rising bubble apparatus</td>
</tr>
<tr>
<td>SA</td>
<td>Simulated annealing</td>
</tr>
<tr>
<td>SF</td>
<td>Oil swelling factor, fraction</td>
</tr>
<tr>
<td>SF_{i}</td>
<td>Dong (1999) factor representing the strength of species i in changing the apparent critical temperature of the mixture relative to the critical temperature of CO_{2}</td>
</tr>
<tr>
<td>Sol</td>
<td>Flue gas or CO_{2} solubility, mole fraction or scf/bbl or sm^{3}/m^{3}</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>STDEV</td>
<td>Standard deviation, %</td>
</tr>
<tr>
<td>T_{ac}</td>
<td>Mole average pseudocritical temperature with using factor SF_i, K</td>
</tr>
<tr>
<td>T_c</td>
<td>Gas critical temperature, °C</td>
</tr>
<tr>
<td>$T_{c, CO2}$</td>
<td>Critical temperature of pure CO$_2$ gas, °C (31.1°C)</td>
</tr>
<tr>
<td>$T_{c, inj}$</td>
<td>Injected gas critical temperature, K</td>
</tr>
<tr>
<td>$T_{c, flue gas}$</td>
<td>Flue gas critical temperature, °C</td>
</tr>
<tr>
<td>T_{ci}</td>
<td>Critical temperature of gas component i, °C</td>
</tr>
<tr>
<td>T_{Ci}</td>
<td>Critical temperature of gas component i, K</td>
</tr>
<tr>
<td>T_{cj}</td>
<td>Critical temperature of component j</td>
</tr>
<tr>
<td>T_{CM}</td>
<td>Mole average critical temperature, K</td>
</tr>
<tr>
<td>T_{cm}</td>
<td>Mole average pseudocritical temperature, °C</td>
</tr>
<tr>
<td>T_{CW}</td>
<td>Weight average pseudocritical temperature with using the critical temperature modification factor (MF_i), °C</td>
</tr>
<tr>
<td>T_{cw}</td>
<td>Weight average pseudocritical temperature, °C</td>
</tr>
<tr>
<td>T_{pc}</td>
<td>Pseudocritical temperature (may be weight average or mole average), °C</td>
</tr>
<tr>
<td>T_{pc}</td>
<td>Flue gas weight average or mole average pseudocritical temperature, °C</td>
</tr>
<tr>
<td>T_r</td>
<td>Reduced reservoir temperature, °C</td>
</tr>
<tr>
<td>T_R</td>
<td>Reservoir temperature, °C</td>
</tr>
<tr>
<td>$T_{Res.}$</td>
<td>Reservoir temperature, K</td>
</tr>
<tr>
<td>Value$_{cal.}$</td>
<td>MMP, solubility, swelling, density, and viscosity predicted value</td>
</tr>
<tr>
<td>Value$_{exp.}$</td>
<td>MMP, solubility, swelling, density, and viscosity experimental value</td>
</tr>
<tr>
<td>$V_{c/m}$</td>
<td>Pseudocritical volume of a mixture, cm3/g</td>
</tr>
<tr>
<td>$V_{cC7+/m}$</td>
<td>Critical volume of the C$_7+$ fraction, cm3/g</td>
</tr>
<tr>
<td>V_{cj}</td>
<td>Critical volume of component j, cm3/g</td>
</tr>
<tr>
<td>V_o</td>
<td>Oil volume fraction</td>
</tr>
<tr>
<td>Vol.</td>
<td>Volatiles (C$_1$ and N$_2$) mole percentage, %</td>
</tr>
<tr>
<td>Volatiles</td>
<td>Volatile components, C$_1$ and N$_2$, fraction</td>
</tr>
<tr>
<td>V_s</td>
<td>Solvent volume fraction</td>
</tr>
<tr>
<td>w_i</td>
<td>Weight fraction of component i, fraction</td>
</tr>
<tr>
<td>w_{ic2+}</td>
<td>Component i normalized weighting fraction in the C$_2+$ fraction of oil</td>
</tr>
<tr>
<td>X</td>
<td>Gas concentration, mole %</td>
</tr>
<tr>
<td>x_{CO2}</td>
<td>CO$_2$ mole percentage in the injection gas, %</td>
</tr>
<tr>
<td>x_i</td>
<td>Mole fraction of gas component i</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>x_j</td>
<td>Mole fraction of component j, fraction</td>
</tr>
<tr>
<td>y</td>
<td>Mole fraction of diluted component</td>
</tr>
<tr>
<td>y_{CO_2}</td>
<td>Mole fraction of CO$_2$ in the injected flue gas, fraction</td>
</tr>
<tr>
<td>y_i</td>
<td>Mole fraction of the gas component i in the injected gas, fraction</td>
</tr>
</tbody>
</table>