Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/103919
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Dominant KCNA2 mutation causes episodic ataxia and pharmacoresponsive epilepsy
Author: Corbett, M.
Bellows, S.
Li, M.
Carroll, R.
Micallef, S.
Carvill, G.
Myers, C.
Howell, K.
Maljevic, S.
Lerche, H.
Gazina, E.
Mefford, H.
Bahlo, M.
Berkovic, S.
Petrou, S.
Scheffer, I.
Gecz, J.
Citation: Neurology, 2016; 87(19):1975-1984
Publisher: LIPPINCOTT WILLIAMS & WILKINS
Issue Date: 2016
ISSN: 0028-3878
1526-632X
Statement of
Responsibility: 
Mark A. Corbett, Susannah T. Bellows, Melody Li, Renée Carroll, Silvana Micallef, Gemma L. Carvill, Candace T. Myers, Katherine B. Howell, Snezana Maljevic, Holger Lerche, Elena V. Gazina, Heather C. Mefford, Melanie Bahlo, Samuel F. Berkovic, Steven Petrou, Ingrid E. Scheffer, Jozef Gecz
Abstract: OBJECTIVE: To identify the genetic basis of a family segregating episodic ataxia, infantile seizures, and heterogeneous epilepsies and to study the phenotypic spectrum of KCNA2 mutations. METHODS: A family with 7 affected individuals over 3 generations underwent detailed phenotyping. Whole genome sequencing was performed on a mildly affected grandmother and her grandson with epileptic encephalopathy (EE). Segregating variants were filtered and prioritized based on functional annotations. The effects of the mutation on channel function were analyzed in vitro by voltage clamp assay and in silico by molecular modeling. KCNA2 was sequenced in 35 probands with heterogeneous phenotypes. RESULTS: The 7 family members had episodic ataxia (5), self-limited infantile seizures (5), evolving to genetic generalized epilepsy (4), focal seizures (2), and EE (1). They had a segregating novel mutation in the shaker type voltage-gated potassium channel KCNA2 (CCDS_827.1: c.765_773del; p.255_257del). A rare missense SCN2A (rs200884216) variant was also found in 2 affected siblings and their unaffected mother. The p.255_257del mutation caused dominant negative loss of channel function. Molecular modeling predicted repositioning of critical arginine residues in the voltage-sensing domain. KCNA2 sequencing revealed 1 de novo mutation (CCDS_827.1: c.890G>A; p.Arg297Gln) in a girl with EE, ataxia, and tremor. CONCLUSIONS: A KCNA2 mutation caused dominantly inherited episodic ataxia, mild infantile-onset seizures, and later generalized and focal epilepsies in the setting of normal intellect. This observation expands the KCNA2 phenotypic spectrum from EE often associated with chronic ataxia, reflecting the marked variation in severity observed in many ion channel disorders.
Keywords: Oocytes; Animals; Xenopus laevis; Humans; Epilepsy; Ataxia; Anticonvulsants; Cohort Studies; DNA Mutational Analysis; Pharmacogenetics; Membrane Potentials; Mutation; Models, Chemical; Aged; Middle Aged; Child; Child, Preschool; Infant; Family Health; Female; Male; Kv1.2 Potassium Channel; Young Adult
Rights: © 2016 American Academy of Neurology
RMID: 0030056722
DOI: 10.1212/WNL.0000000000003309
Grant ID: http://purl.org/au-research/grants/nhmrc/628952
http://purl.org/au-research/grants/nhmrc/1054618
http://purl.org/au-research/grants/nhmrc/1041920
http://purl.org/au-research/grants/nhmrc/1002098
http://purl.org/au-research/grants/nhmrc/1104831
Appears in Collections:Medicine publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.