Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/112779
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Speed breeding for multiple quantitative traits in durum wheat
Author: Alahmad, S.
Dinglasan, E.
Leung, K.
Riaz, A.
Derbal, N.
Voss-Fels, K.
Able, J.
Bassi, F.
Christopher, J.
Hickey, L.
Citation: Plant Methods, 2018; 14(1):36-1-36-15
Publisher: BioMed Central
Issue Date: 2018
ISSN: 1746-4811
1746-4811
Statement of
Responsibility: 
Samir Alahmad, Eric Dinglasan, Kung Ming Leung, Adnan Riaz, Nora Derbal, Kai P. Voss-Fels, Jason A. Able, Filippo M. Bassi, Jack Christopher and Lee T. Hickey
Abstract: Plant breeding requires numerous generations to be cycled and evaluated before an improved cultivar is released. This lengthy process is required to introduce and test multiple traits of interest. However, a technology for rapid generation advance named 'speed breeding' was successfully deployed in bread wheat (Triticum aestivum L.) to achieve six generations per year while imposing phenotypic selection for foliar disease resistance and grain dormancy. Here, for the first time the deployment of this methodology is presented in durum wheat (Triticum durum Desf.) by integrating selection for key traits, including above and below ground traits on the same set of plants. This involved phenotyping for seminal root angle (RA), seminal root number (RN), tolerance to crown rot (CR), resistance to leaf rust (LR) and plant height (PH). In durum wheat, these traits are desirable in environments where yield is limited by in-season rainfall with the occurrence of CR and epidemics of LR. To evaluate this multi-trait screening approach, we applied selection to a large segregating F2 population (n = 1000) derived from a bi-parental cross (Outrob4/Caparoi). A weighted selection index (SI) was developed and applied. The gain for each trait was determined by evaluating F3 progeny derived from 100 'selected' and 100 'unselected' F2 individuals.Transgressive segregation was observed for all assayed traits in the Outrob4/Caparoi F2 population. Application of the SI successfully shifted the population mean for four traits, as determined by a significant mean difference between 'selected' and 'unselected' F3 families for CR tolerance, LR resistance, RA and RN. No significant shift for PH was observed.The novel multi-trait phenotyping method presents a useful tool for rapid selection of early filial generations or for the characterization of fixed lines out-of-season. Further, it offers efficient use of resources by assaying multiple traits on the same set of plants. Results suggest that when performed in parallel with speed breeding in early generations, selection will enrich recombinant inbred lines with desirable alleles and will reduce the length and number of years required to combine these traits in elite breeding populations and therefore cultivars.
Keywords: Crown rot
Drought adaptation
Fusarium
Leaf rust
Root architecture
Segregating populations
Speed breeding
Trait pyramiding
Rights: © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
DOI: 10.1186/s13007-018-0302-y
Grant ID: http://purl.org/au-research/grants/arc/DE170101296
Published version: http://dx.doi.org/10.1186/s13007-018-0302-y
Appears in Collections:Agriculture, Food and Wine publications
Aurora harvest 8

Files in This Item:
File Description SizeFormat 
hdl_112779.pdfPublished Version2.47 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.