Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/116136
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Fire-modified meteorology in a coupled fire-atmosphere model
Author: Peace, M.
Mattner, T.
Mills, G.
Kepert, J.
Mccaw, L.
Citation: Journal of Applied Meteorology and Climatology, 2015; 54(3):704-720
Publisher: American Meteorological Society
Issue Date: 2015
ISSN: 1558-8424
1558-8432
Statement of
Responsibility: 
Mika Peace, Trent Mattner, Graham Mills, Jeffrey Kepert, Lachlan McCaw
Abstract: The coupled fire-atmosphere model consisting of the Weather and Forecasting (WRF) Model coupled with the fire-spread model (SFIRE) module has been used to simulate a bushfire at D’Estrees Bay on Kangaroo Island, South Australia, in December 2007. Initial conditions for the simulations were provided by two global analyses: the GFS operational analysis and ERA-Interim. For each NWP initialization, the simulations were run with and without feedback from the fire to the atmospheric model. The focus of this study was examining how the energy fluxes from the simulated fire modified the local meteorological environment. With feedback enabled, the propagation speed of the sea-breeze frontal line was faster and vertical motion in the frontal zone was enhanced. For one of the initial conditions with feedback on, a vortex developed adjacent to the head fire and remained present for over 5 h of simulation time. The vortex was not present without fire-atmosphere feedback. The results show that the energy fluxes released by a fire can effect significant changes on the surrounding mesoscale atmosphere. This has implications for the appropriate use of weather parameters extracted from NWP and used in prediction for fire operations. These meteorological modifications also have implications for anticipating likely fire behavior.
Rights: © 2015 American Meteorological Society
DOI: 10.1175/JAMC-D-14-0063.1
Published version: http://dx.doi.org/10.1175/jamc-d-14-0063.1
Appears in Collections:Aurora harvest 8
Mathematical Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.