Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/118463
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Osteocytes respond to particles of clinically-relevant conventional and cross-linked polyethylene and metal alloys by up-regulation of resorptive and inflammatory pathways
Author: Ormsby, R.
Solomon, L.
Yang, D.
Crotti, T.
Haynes, D.
Findlay, D.
Atkins, G.
Citation: Acta Biomaterialia, 2019; 87:296-306
Publisher: Elsevier
Issue Date: 2019
ISSN: 1742-7061
1878-7568
Statement of
Responsibility: 
Renee T. Ormsby, Lucian B. Solomon, Dongqing Yang, Tania N. Crotti, David R. Haynes, David M. Findlay, Gerald J. Atkins
Abstract: Periprosthetic osteolysis is a major cause of implant failure in total hip replacements. Aseptic loosening caused by osteolytic lesions is associated with the production of bioactive wear particles from the articulations of implants. Wear particles infiltrate the surrounding tissue of implants, promoting inflammation as well as bone resorption. Osteocytes have been shown to both regulate physiological osteoclastogenesis and directly remodel their perilacunar bone matrix by the process of osteocytic osteolysis. We hypothesise that osteocytes respond to wear debris of orthopaedic implant materials by adopting a pro-catabolic phenotype and thus contribute to periprosthetic osteolysis through the known pathways of bone loss. Osteocyte responses to particles derived from clinically relevant materials, ultra-high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (XLPE) and metal alloys, Ti6Al4V and CoCrMo, were examined in vitro in human primary osteocyte-like cultures. Osteocyte-like cells exposed to both polyethylene and metal wear particle types showed upregulated expression of catabolic markers associated with osteocytic osteolysis, MMP13, carbonic anhydrase 2 (CA2) and cathepsin K (CTSK). In addition, pro-osteoclastogenesis markers RANKL and M-CSF were induced, as well as the expression of pro-inflammatory cytokines, IL-6 and TNFα, albeit with different kinetics. These findings suggest a previously unrecognised action of wear particles of multiple orthopaedic materials on osteocytes, and suggest a multifaceted role for osteocytes in periprosthetic osteolysis. STATEMENT OF SIGNIFICANCE: This study addresses periprosthetic osteolysis, a major clinical problem leading to aseptic loosening of orthopaedic implants. It is well accepted that wear particles of polyethylene and of other implant materials stimulate the activity of bone resorbing osteoclasts. Our recent work provided evidence that commercial particles of ultra-high molecular weight polyethylene (UHMWPE) stimulated osteocytes to adopt a bone catabolic state. In this study we demonstrate for the first time that particles derived from materials in clinical use, conventional UHMWPE, highly cross-linked polyethylene (XLPE), and Ti6Al4V and CoCrMo metal alloys, all stimulate human osteocyte activities of osteocyte-regulated osteoclastogenesis, osteocytic osteolysis, proinflammatory responses, osteocyte apoptosis, albeit to varying extents. This study provides further mechanistic insight into orthopaedic wear particle mediated bone disease in terms of the osteocyte, the most abundant and key controlling cell type in bone.
Keywords: Cobalt chrome; Osteocyte; Polyethylene; Titanium alloy; Wear particle
Rights: © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
RMID: 0030107640
DOI: 10.1016/j.actbio.2019.01.047
Grant ID: http://purl.org/au-research/grants/nhmrc/1041456
Appears in Collections:Medicine publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.