Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYu, J.-
dc.contributor.authorShi, P.-
dc.contributor.authorLin, C.-
dc.contributor.authorYu, H.-
dc.identifier.citationIEEE Transactions on Cybernetics, 2020; 50(6):2536-2545-
dc.description.abstractIn this paper, the tracking control problem is considered for a class of multiple-input multiple-output (MIMO) nonlinear systems with input saturation and unknown direction control gains. A command filtered adaptive neural networks (NNs) control method is presented with regard to the MIMO systems by designing the virtual controllers and error compensation signals. First, the command filtering is used to solve the "explosion of complexity" problem in the conventional backstepping design and the nonlinearities are approximated by NNs. Then, the error compensation signals are developed to conquer the shortcoming of the dynamic surface method. In addition, the Nussbaum-type functions are utilized to cope with the unknown direction control gains. The effectiveness of the proposed new design scheme is illustrated by simulation examples.-
dc.description.statementofresponsibilityJinpeng Yu, Peng Shi, Chong Lin and Haisheng Yu-
dc.rights© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See for more information.-
dc.subjectAdaptive neural control; command filtering control; multiple-input multiple-output (MIMO) nonlinear systems; Nussbaum functions-
dc.titleAdaptive neural command filtering control for nonlinear MIMO systems with saturation input and unknown control direction-
dc.typeJournal article-
dc.identifier.orcidShi, P. [0000-0001-8218-586X]-
Appears in Collections:Aurora harvest 8
Electrical and Electronic Engineering publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.