Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/132918
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, B.-
dc.contributor.authorSun, Z.-
dc.contributor.authorWu, J.-
dc.contributor.authorRuan, J.-
dc.contributor.authorZhao, P.-
dc.contributor.authorLiu, K.-
dc.contributor.authorZhao, C.X.-
dc.contributor.authorSheng, J.-
dc.contributor.authorLiang, T.-
dc.contributor.authorChen, D.-
dc.date.issued2021-
dc.identifier.citationAngewandte Chemie International Edition, 2021; 60(17):9284-9289-
dc.identifier.issn1433-7851-
dc.identifier.issn1521-3773-
dc.identifier.urihttps://hdl.handle.net/2440/132918-
dc.description.abstractMost tumors have more severe hypoxia levels than normal tissue; tumor hypoxia is thus a useful target for cancer treatment. Here, we develop an effective oxygen delivery vehicle of polydopamine-nanoparticle-stabilized oxygen microcapsules by interfacial polymerization. The oxygen microcapsules have excellent biocompatibility. Oxygen could easily diffuse out from the microcapsules, thus increasing and maintaining the microenvironment at an oxygen-rich state. In vitro cell cultures confirm that oxygen microcapsules could effectively improve the hypoxia microenvironment, showing the lowest fluorescent intensity of hypoxia-green-labeled cells. When injected subcutaneously in vivo, oxygen microcapsules could also improve the tumor's hypoxia microenvironment, thus suppressing the growth of tumor. Synergetic therapy using oxygen microcapsules and gemcitabine drugs is an effective way for tumor treatment, showing the best performance in suppressing the tumor's growth.-
dc.description.statementofresponsibilityBaiheng Wu, Zhu Sun, Jiangchao Wu, Jian Ruan, Peng Zhao, Kai Liu, Chun-Xia Zhao, Jianpeng Sheng, Tingbo Liang, and Dong Chen-
dc.language.isoen-
dc.publisherWiley-
dc.rights© 2021 Wiley-VCH GmbH-
dc.source.urihttp://dx.doi.org/10.1002/anie.202100752-
dc.subjectCancer therapy; drug delivery; microcapsule; oxygen delivery; synergetic therapy-
dc.subject.meshOxygen-
dc.subject.meshIndoles-
dc.subject.meshPolymers-
dc.subject.meshBiocompatible Materials-
dc.subject.meshCapsules-
dc.subject.meshDrug Delivery Systems-
dc.subject.meshMolecular Structure-
dc.subject.meshParticle Size-
dc.subject.meshNanoparticles-
dc.subject.meshPolymerization-
dc.titleNanoparticle-stabilized oxygen microcapsules prepared by interfacial polymerization for enhanced oxygen delivery-
dc.typeJournal article-
dc.identifier.doi10.1002/anie.202100752-
dc.relation.granthttp://purl.org/au-research/grants/arc/FT140100726-
dc.relation.granthttp://purl.org/au-research/grants/arc/DP200101238-
pubs.publication-statusPublished-
Appears in Collections:Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.