Highly symmetric homogeneous Kobayashi-hyperbolic manifolds

Date

2021

Authors

Herrington, Elliot Michael

Editors

Advisors

Larusson, Finnur
Leistner, Thomas

Journal Title

Journal ISSN

Volume Title

Type:

Thesis

Citation

Statement of Responsibility

Conference Name

Abstract

Kobayashi-hyperbolic manifolds are an important and well-studied class of complex manifolds defined by the property that the Kobayashi pseudodistance is a true distance. Such manifolds that have automorphism group of sufficiently high dimension can be classified up to biholomorphism, and the goal of this thesis is to continue the classification of homogeneous Kobayashihyperbolic manifolds started by Alexander Isaev in the early 2000s. We settle the classification of such manifolds with automorphism group dimensions n2 − 7 and n2 − 8, where n is the dimension of the manifold. We do so by analysing the Lie algebra of the automorphism group of a Siegel domain of the second kind corresponding to a homogeneous Kobayashi-hyperbolic manifold of a given automorphism group dimension.

School/Discipline

School of Mathematical Sciences

Dissertation Note

Thesis (Ph.D.) -- University of Adelaide, School of Mathematical Sciences, 2021

Provenance

This electronic version is made publicly available by the University of Adelaide in accordance with its open access policy for student theses. Copyright in this thesis remains with the author. This thesis may incorporate third party material which has been used by the author pursuant to Fair Dealing exceptions. If you are the owner of any included third party copyright material you wish to be removed from this electronic version, please complete the take down form located at: http://www.adelaide.edu.au/legals

Description

Access Status

Rights

License

Grant ID

Published Version

Call number

Persistent link to this record