Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/133640
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNguyen, P.D.-
dc.contributor.authorGurevich, D.B.-
dc.contributor.authorSonntag, C.-
dc.contributor.authorHersey, L.-
dc.contributor.authorAlaei, S.-
dc.contributor.authorNim, H.T.-
dc.contributor.authorSiegel, A.-
dc.contributor.authorHall, T.E.-
dc.contributor.authorRossello, F.J.-
dc.contributor.authorBoyd, S.E.-
dc.contributor.authorPolo, J.M.-
dc.contributor.authorCurrie, P.D.-
dc.date.issued2017-
dc.identifier.citationCell Stem Cell, 2017; 21(1):107-119-
dc.identifier.issn1934-5909-
dc.identifier.issn1875-9777-
dc.identifier.urihttps://hdl.handle.net/2440/133640-
dc.description.abstractOrgan growth requires a careful balance between stem cell self-renewal and lineage commitment to ensure proper tissue expansion. The cellular and molecular mechanisms that mediate this balance are unresolved in most organs, including skeletal muscle. Here we identify a long-lived stem cell pool that mediates growth of the zebrafish myotome. This population exhibits extensive clonal drift, shifting from random deployment of stem cells during development to reliance on a small number of dominant clones to fuel the vast majority of muscle growth. This clonal drift requires Meox1, a homeobox protein that directly inhibits the cell-cycle checkpoint gene ccnb1. Meox1 initiates G<sub>2</sub> cell-cycle arrest within muscle stem cells, and disrupting this G<sub>2</sub> arrest causes premature lineage commitment and the resulting defects in muscle growth. These findings reveal that distinct regulatory mechanisms orchestrate stem cell dynamics during organ growth, beyond the G<sub>0</sub>/G<sub>1</sub> cell-cycle inhibition traditionally associated with maintaining tissue-resident stem cells.-
dc.description.statementofresponsibilityPhong Dang Nguyen, David Baruch Gurevich, Carmen Sonntag, Lucy Hersey, Sara Alaei, Hieu Tri Nim ... al et.-
dc.language.isoen-
dc.publisherCell Press-
dc.rights© 2017 Published by Elsevier Inc.-
dc.source.urihttp://dx.doi.org/10.1016/j.stem.2017.06.003-
dc.subjectCell Line-
dc.subjectMyoblasts-
dc.subjectAnimals-
dc.subjectZebrafish-
dc.subjectMice-
dc.subjectHomeodomain Proteins-
dc.subjectZebrafish Proteins-
dc.subjectCell Lineage-
dc.subjectCyclin B1-
dc.subjectG2 Phase Cell Cycle Checkpoints-
dc.subject.meshCell Line-
dc.subject.meshMyoblasts-
dc.subject.meshAnimals-
dc.subject.meshZebrafish-
dc.subject.meshMice-
dc.subject.meshHomeodomain Proteins-
dc.subject.meshZebrafish Proteins-
dc.subject.meshCell Lineage-
dc.subject.meshCyclin B1-
dc.subject.meshG2 Phase Cell Cycle Checkpoints-
dc.subject.meshTranscription Factors-
dc.titleMuscle stem cells undergo extensive clonal drift during tissue growth via meox1-mediated induction of G2 cell-cycle arrest-
dc.typeJournal article-
dc.identifier.doi10.1016/j.stem.2017.06.003-
pubs.publication-statusPublished-
dc.identifier.orcidPolo, J.M. [0000-0002-2531-778X]-
Appears in Collections:Zoology publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.