Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/61169
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Impact of protein on darkening in yellow alkaline noodles
Author: Asenstorfer, R.
Appelbee, M.
Mares, D.
Citation: Journal of Agricultural and Food Chemistry, 2010; 58(7):4500-4507
Publisher: Amer Chemical Soc
Issue Date: 2010
ISSN: 0021-8561
1520-5118
Statement of
Responsibility: 
Robert E. Asenstorfer, Marie J. Appelbee and Daryl J. Mares
Abstract: Darkening in yellow alkaline noodles (YAN) was examined over a 24 h period in noodles made from 4 wheat varieties, including varieties with different levels of polyphenol oxidase (PPO) activity, selected to cover a range of protein levels. Noodles were made in the presence and absence of the PPO inhibitor, tropolone. The darkening was divided into two time periods: 0-4 h and 4-24 h. The first four hours was described by a composite rate equation, and this period was subdivided into two stages. The rate of darkening in the first stage was independent of both protein concentration and PPO activity. The amount of darkening (c), however, was highly dependent on protein concentration during this stage (-tropolone, r = 0.902; +tropolone, r = 0.905), but independent of PPO activity. The first stage darkening was a zero order reaction where additional protein does not increase the reaction rate, but when the protein supply has been depleted, the reaction stops. The rate of darkening during the first stage (k'(1) = 5.6 +/- 1.0) was similar to the rate of change in the protein structure (k'(1) = 6.5 +/- 1.3) as measured using the amide II band by infrared spectroscopy. This suggested that the first stage of darkening represents changes in light reflectance and absorbance caused by changes in hydrogen bonding rather than changes in covalent bonding. During the second stage of darkening, both the rate (k'(2)) and amount of darkening (DeltaL*(4h-c)) were significantly correlated with protein concentration (-tropolone, r = 0.465; +tropolone, r = 0.813), and in the absence of tropolone the amount of darkening was increased by PPO activity. The amount of darkening (DeltaL*(24h-4h)) during the second time period (4-24 h) (or third stage) was significantly correlated in the presence of tropolone (r = 0.375) and in the absence of tropolone (r = 0.428) with protein concentration. However, compared with earlier stages the response of non-PPO darkening during the third stage to change in protein concentration was smaller. Protein oxidation, or more specifically oxidation of tyrosine groups within the protein, appears to be the main mechanism involved in non-PPO darkening in YAN during the second and third stages with glutenin being the main reactant. Albumin and globulin are important substrates for PPO. No differences in darkening were detected in YAN made from the four varieties in the presence of tropolone; however, differences in YAN darkening were observed for the second and third stages due to site and year variation.
Keywords: Yellow alkaline noodle
polyphenol oxidase
non-PPO darkening
Rights: Copyright © 2010 American Chemical Society
DOI: 10.1021/jf904232p
Published version: http://dx.doi.org/10.1021/jf904232p
Appears in Collections:Agriculture, Food and Wine publications
Aurora harvest

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.