Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/69787
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFordham, D.en
dc.contributor.authorWigley, T.en
dc.contributor.authorBrook, B.en
dc.date.issued2011en
dc.identifier.citationEcological Applications, 2011; 21(8):3317-3331en
dc.identifier.issn1051-0761en
dc.identifier.issn1939-5582en
dc.identifier.urihttp://hdl.handle.net/2440/69787-
dc.description.abstractSpecies distribution models, linked to climate projections, are widely used in extinction-risk assessment and conservation planning. However, the degree of confidence that we can place on future climate-change projections depends on global climate-model performance and involves uncertainties that need to be assessed rigorously via climate-model evaluation. Performance assessments are important because the choice of climate model influences projections of species’ range movement and extinction risk. A consensus view from the climate modeling community is that no single climate model is superior in its ability to forecast key climatic features. Despite this, the advantages of using multi-model ensemble averaged climate forecasts to account for climate-model uncertainties have not been recognized by ecologists. Here we propose a method to use a range of skill and convergence metrics to rank commonly used atmosphere–ocean general circulation models (AOGCMs) according to their skill in reproducing 20-year observed patterns of regional and global climates of interest, and to assess their consistency with other AOGCMs. By eliminating poorly performing models and averaging the remainder with equal weights, we show how downscaled annual multi-climate-model ensemble-averaged forecasts, which have a strong regional focus, can be generated. We demonstrate that: (1) model ranking (match of simulated to observed conditions) differs according to the skill metric used, as well as the climate variable and season considered; (2) although the multi-model averaged result tends to outperform single models at a global scale, at the continental scale at least some models can perform better than the multi-model average; and (3) forecasts for the Australian region, which are often based on a single AOGCM (CSIRO-3.0), show spatial patterns of change that differ noticeably from ensemble-average projections based on a subset of better-performing AOGCMs. Our suggested approach—novel in the ecology discipline—provides a straightforward, consistent, and defensible method for conservation practitioners and natural-resource managers to generate estimates of future climate change at a spatial resolution suitable for biodiversity impact studies.en
dc.description.statementofresponsibilityDamien A. Fordham, Tom M. L. Wigley and Barry W. Brooken
dc.language.isoenen
dc.publisherEcological Soc Ameren
dc.rightsCopyright 2011 by the Ecological Society of America.en
dc.subjectatmosphere–ocean general circulation models, AOGCMs; Austral rainfall and temperature forecasts; bioclimate envelope; biodiversity; conservation; extinction risk; general circulation model, GCM; global climate model; global warming; landscape planning; range movement; species distribution modelen
dc.titleMulti-model climate projections for biodiversity risk assessmentsen
dc.typeJournal articleen
dc.identifier.rmid0020116247en
dc.identifier.doi10.1890/11-0314.1en
dc.relation.granthttp://purl.org/au-research/grants/arc/LP0989420en
dc.identifier.pubid26040-
pubs.library.collectionEarth and Environmental Sciences publicationsen
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidFordham, D. [0000-0003-2137-5592]en
Appears in Collections:Earth and Environmental Sciences publications
Environment Institute Leaders publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.