Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/73666
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Estimating traveltimes and groundwater flow patterns using 3D time-lapse crosshole ERT imaging of electrical resistivity fluctuations induced by infiltrating river water
Author: Coscia, I.
Linde, N.
Greenhalgh, S.
Vogt, T.
Green, A.
Citation: Geophysics, 2012; 77(4):239-250
Publisher: Soc Exploration Geophysicists
Issue Date: 2012
ISSN: 0016-8033
1942-2156
Statement of
Responsibility: 
Ilaria Coscia, Niklas Linde, Stewart Greenhalgh, Tobias Vogt and Alan Green
Abstract: The infiltration of river water into aquifers is of high relevance to drinking-water production and is a key driver of biogeochemical processes in the hyporheic and riparian zone, but the distribution and quantification of the infiltrating water are difficult to determine using conventional hydrological methods (e.g., borehole logging and tracer tests). By time-lapse inverting crosshole ERT (electrical resistivity tomography) monitoring data, we imaged groundwater flow patterns driven by river water infiltrating a perialpine gravel aquifer in northeastern Switzerland. This was possible because the electrical resistivity of the infiltrating water changed during rainfall-runoff events. Our time-lapse resistivity models indicated rather complex flow patterns as a result of spatially heterogeneous bank filtration and aquifer heterogeneity. The upper part of the aquifer was most affected by the river infiltrate, and the highest groundwater velocities and possible preferential flow occurred at shallow to intermediate depths. Time series of the reconstructed resistivity models matched groundwater electrical resistivity data recorded on borehole loggers in the upper and middle parts of the aquifer, whereas the resistivity models displayed smaller variations and delayed responses with respect to the logging data in the lower part. This study demonstrated that crosshole ERT monitoring of natural electrical resistivity variations of river infiltrate could be used to image and quantify 3D bank filtration and aquifer dynamics at a high spatial resolution.
Keywords: Resistivity
inversion
hydrology
crosswell
Rights: © 2012 Society of Exploration Geophysicists. All rights reserved.
DOI: 10.1190/geo2011-0328.1
Published version: http://dx.doi.org/10.1190/geo2011-0328.1
Appears in Collections:Aurora harvest 5
Chemistry and Physics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.