Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: The effect of surface reactions on the prediction of NOₓ conversion efficiency in a porous burner
Other Titles: The effect of surface reactions on the prediction of NO(x) conversion efficiency in a porous burner
Author: Afsharvahid, S.
Alvarado, P.
Ashman, P.
Dally, B.
Citation: Combustion and Flame, 2013; 160(10):2169-2181
Publisher: Elsevier Science Inc
Issue Date: 2013
ISSN: 0010-2180
Statement of
Shahrooz Afsharvahid, Pedro N. Alvarado, Peter J. Ashman, Bassam B. Dally
Abstract: It is known that the presence of solid surfaces can strongly influence gas-phase reaction systems. This effect arises as a result of heterogeneous reactions between gas-phase radicals and surfaces. The rate of radical termination at a surface is strongly influenced by both the nature of the surface and the conditions, if any, under which the surface has been pre-treated. Given the large surface-to-volume ratios that are characteristic of porous burners it is imperative that these surface reactions, leading to termination of gas-phase radicals, be considered when modelling combustion, and the formation of minor species, in porous burners.The impact of surface reactions on the predicted NOX conversion within a porous burner is modelled using a short-cut approach. Limiting cases which either ignore radical termination or assume that radical termination proceeds at the mass-transfer-limited rate are considered. For intermediate cases, an effective reaction rate that includes the combined effects of mass transfer and surface reaction is assumed. The current modelling predictions are compared with our previous work on NOX conversion in a porous burner, in which the effects of surface reactions were neglected. For these data, an effective rate of radical loss at the burner surface equivalent to 8×10-4 times the mass-transfer limited rate is found to give best agreement. Comparing the assumed effective rate of H radical loss at the burner surface with the estimated surface collision rate suggests that H atoms recombine with an efficiency of 1×10-5, which is in good agreement with recent measurements on silica and Pyrex surfaces. Despite very low radical recombination efficiencies, the overall rate of surface recombination is sufficiently large to markedly influence the model predictions for this system at φ≤1.3.The impact of surface reaction rate, different equivalence ratios, NO initial concentration and pathways is also investigated. It is found that under slightly fuel-rich conditions (φ≤1.3), surface reaction rate has the maximum impact while for higher equivalence ratios (φ>1.3) the effect is minimal. It is also found that the presence of surface reactions significantly impacts on the NOX reduction efficiency for mixtures with low NO concentration. These differences are believed to be related to the NO conversion pathways under these different conditions. For conditions where the NO conversion mainly follows a pathway: NO⇒HNO⇒NH⇒N2, the presence of surface reactions has the greatest effect on NOx predictions whereas for conditions where the NO conversion follows a pathway: NO⇒HCNO⇒HNCO⇒NH2⇒NH3, the presence of surface reactions has a minimal impact on NOx predictions. © 2013.
Keywords: Surface reaction
Porous burner
NOₓ reburning
NOₓ reduction mechanism
Rights: Crown Copyright © 2013
DOI: 10.1016/j.combustflame.2013.04.017
Published version:
Appears in Collections:Aurora harvest 4
Mechanical Engineering publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.