Impact of menstrual cycle phase on the exercise status of young, sedentary women
Date
2003
Authors
Redman, L.
Scroop, G.
Norman, R.
Editors
Advisors
Journal Title
Journal ISSN
Volume Title
Type:
Journal article
Citation
European Journal of Applied Physiology, 2003; 90(5-6):505-513
Statement of Responsibility
Leanne M. Redman, Garry C. Scroop and Robert J. Norman
Conference Name
Abstract
The purpose of the present study was to compare exercise status during the follicular (FP) and luteal (LP) phases of the menstrual cycle of a single group of young, sedentary women, where the marked differential in the blood concentrations of 17-oestradiol ([E2]) and progesterone ([P4]) has the potential to alter the metabolic response to exercise. Fourteen females [21.8 (4.0) years, peak oxygen uptake (V̇O2peak) <45 ml·kg –1·min–1] performed both incremental exercise to exhaustion and steady-state submaximal cycle ergometer exercise while measurements were made of several metabolic and hormonal variables. With the incremental exercise test, time to exhaustion, maximal power output and total work done were not different between the two phases, nor were the absolute values for V̇O2peak or the corresponding values for ventilation (V̇E), respiratory frequency (fR) and heart rate (HR). Resting, end-exercise and peak (post-exercise) plasma lactate concentrations and the lactate threshold were not different between the two phases either. However, as the workloads increased during the incremental protocol, plasma lactate concentration, carbon dioxide output (CO2) and the respiratory exchange ratio (RER) all were lower during LP, while oxygen uptake (V̇O2) was higher. With steady-state submaximal exercise, at workloads corresponding to 25% and 75% of menstrual cycle phase-specific O2peak, V̇O2 and the oxygen pulse (V̇O2/HR) were higher and RER and plasma lactate concentration lower during LP. Regardless of phase, [E2] increased with both incremental and steady-state submaximal exercise, while [P4] was unchanged. It is concluded that while exercise capacity, as defined by O2peak and the lactate threshold, is unaffected by cycle phase in young, sedentary women, the metabolic responses in the LP during both incremental and steady-state submaximal exercise suggest a greater dependence on fat as an energy source. Keywords Lactate threshold - Oestrogen - Oxygen uptake - Progesterone - Substrate utilisation
School/Discipline
Dissertation Note
Provenance
Description
The original publication is available at www.springerlink.com