Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/88581
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Defining the antigenic diversity of Plasmodium falciparum Apical Membrane Antigen 1 and the requirements for a multi-allele vaccine against malaria
Author: Drew, D.
Hodder, A.
Wilson, D.
Foley, M.
Mueller, I.
Siba, P.
Dent, A.
Cowman, A.
Beeson, J.
Citation: PLoS One, 2012; 7(12):e51023-1-e51023-11
Publisher: Public Library of Science
Issue Date: 2012
ISSN: 1932-6203
1932-6203
Editor: Hviid, L.
Statement of
Responsibility: 
Damien R. Drew, Anthony N. Hodder, Danny W. Wilson, Michael Foley, Ivo Mueller, Peter M. Siba, Arlene E. Dent, Alan F. Cowman, James G. Beeson
Abstract: Apical Membrane Antigen 1 (AMA1) is a leading malaria vaccine candidate and a target of naturally-acquired human immunity. Plasmodium falciparum AMA1 is polymorphic and in vaccine trials it induces strain-specific protection. This antigenic diversity is a major roadblock to development of AMA1 as a malaria vaccine and understanding how to overcome it is essential. To assess how AMA1 antigenic diversity limits cross-strain growth inhibition, we assembled a panel of 18 different P. falciparum isolates which are broadly representative of global AMA1 sequence diversity. Antibodies raised against four well studied AMA1 alleles (W2Mef, 3D7, HB3 and FVO) were tested for growth inhibition of the 18 different P. falciparum isolates in growth inhibition assays (GIA). All antibodies demonstrated substantial cross-inhibitory activity against different isolates and a mixture of the four different AMA1 antibodies inhibited all 18 isolates tested, suggesting significant antigenic overlap between AMA1 alleles and limited antigenic diversity of AMA1. Cross-strain inhibition by antibodies was only moderately and inconsistently correlated with the level of sequence diversity between AMA1 alleles, suggesting that sequence differences are not a strong predictor of antigenic differences or the cross-inhibitory activity of anti-allele antibodies. The importance of the highly polymorphic C1-L region for inhibitory antibodies and potential vaccine escape was assessed by generating novel transgenic P. falciparum lines for testing in GIA. While the polymorphic C1-L epitope was identified as a significant target of some growth-inhibitory antibodies, these antibodies only constituted a minor proportion of the total inhibitory antibody repertoire, suggesting that the antigenic diversity of inhibitory epitopes is limited. Our findings support the concept that a multi-allele AMA1 vaccine would give broad coverage against the diversity of AMA1 alleles and establish new tools to define polymorphisms important for vaccine escape.
Keywords: Animals
Animals, Genetically Modified
Humans
Parasites
Plasmodium falciparum
Malaria
Membrane Proteins
Protozoan Proteins
Malaria Vaccines
Antibodies, Protozoan
Antigens, Protozoan
Phylogeny
Cross Reactions
Antigenic Variation
Base Sequence
Polymorphism, Genetic
Alleles
Rights: © 2012 Drew et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
DOI: 10.1371/journal.pone.0051023
Grant ID: ARC
Published version: http://dx.doi.org/10.1371/journal.pone.0051023
Appears in Collections:Aurora harvest 7
Microbiology and Immunology publications

Files in This Item:
File Description SizeFormat 
hdl_88581.pdfPublished version1.04 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.