Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/89280
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Heterologous prime-boost-boost immunisation of Chinese cynomolgus macaques using DNA and recombinant poxvirus vectors expressing HIV-1 virus-like particles
Author: Bridge, S.
Sharpe, S.
Dennis, M.
Dowall, S.
Getty, B.
Anson, D.
Skinner, M.
Stewart, J.
Blanchard, T.
Citation: Virology Journal, 2011; 8(1):429-1-429-15
Publisher: BioMed Central
Issue Date: 2011
ISSN: 1743-422X
1743-422X
Statement of
Responsibility: 
Simon H Bridge, Sally A Sharpe, Mike J Dennis, Stuart D Dowall, Brian Getty, Donald S Anson, Michael A Skinner, James P Stewart, and Tom J Blanchard
Abstract: BACKGROUND: There is renewed interest in the development of poxvirus vector-based HIV vaccines due to the protective effect observed with repeated recombinant canarypox priming with gp120 boosting in the recent Thai placebo-controlled trial. This study sought to investigate whether a heterologous prime-boost-boost vaccine regimen in Chinese cynomolgus macaques with a DNA vaccine and recombinant poxviral vectors expressing HIV virus-like particles bearing envelopes derived from the most prevalent clades circulating in sub-Saharan Africa, focused the antibody response to shared neutralising epitopes. METHODS: Three Chinese cynomolgus macaques were immunised via intramuscular injections using a regimen composed of a prime with two DNA vaccines expressing clade A Env/clade B Gag followed by boosting with recombinant fowlpox virus expressing HIV-1 clade D Gag, Env and cholera toxin B subunit followed by the final boost with recombinant modified vaccinia virus Ankara expressing HIV-1 clade C Env, Gag and human complement protein C3d. We measured the macaque serum antibody responses by ELISA, enumerated T cell responses by IFN-γ ELISpot and assessed seroneutralisation of HIV-1 using the TZM-bl β-galactosidase assay with primary isolates of HIV-1. RESULTS: This study shows that large and complex synthetic DNA sequences can be successfully cloned in a single step into two poxvirus vectors: MVA and FPV and the recombinant poxviruses could be grown to high titres. The vaccine candidates showed appropriate expression of recombinant proteins with the formation of authentic HIV virus-like particles seen on transmission electron microscopy. In addition the b12 epitope was shown to be held in common by the vaccine candidates using confocal immunofluorescent microscopy. The vaccine candidates were safely administered to Chinese cynomolgus macaques which elicited modest T cell responses at the end of the study but only one out of the three macaques elicited an HIV-specific antibody response. However, the antibodies did not neutralise primary isolates of HIV-1 or the V3-sensitive isolate SF162 using the TZM-bl β-galactosidase assay. CONCLUSIONS: MVA and FP9 are ideal replication-deficient viral vectors for HIV-1 vaccines due to their excellent safety profile for use in humans. This study shows this novel prime-boost-boost regimen was poorly immunogenic in Chinese cynomolgus macaques.
Keywords: Animals
Macaca fascicularis
Humans
Fowlpox virus
Vaccinia virus
Reassortant Viruses
HIV Infections
beta-Galactosidase
HIV Envelope Protein gp120
DNA
Vaccines, DNA
Immunization, Secondary
Vaccination
Injections, Intramuscular
AIDS Vaccines
HIV Antibodies
Antigens, Heterophile
Genetic Vectors
HIV-1
Gene Products, gag
env Gene Products, Human Immunodeficiency Virus
Vaccines, Virus-Like Particle
Male
Rights: © 2011 Bridge et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
DOI: 10.1186/1743-422X-8-429
Published version: http://dx.doi.org/10.1186/1743-422x-8-429
Appears in Collections:Aurora harvest 7
Paediatrics publications

Files in This Item:
File Description SizeFormat 
hdl_89280.pdfPublished version7.59 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.