Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/91003
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWatts-Williams, S.-
dc.contributor.authorSmith, F.-
dc.contributor.authorMcLaughlin, M.-
dc.contributor.authorPatti, A.-
dc.contributor.authorCavagnaro, T.-
dc.date.issued2015-
dc.identifier.citationPlant and Soil: international journal on plant-soil relationships, 2015; 390(1-2):157-166-
dc.identifier.issn0032-079X-
dc.identifier.issn1573-5036-
dc.identifier.urihttp://hdl.handle.net/2440/91003-
dc.description.abstractINTRODUCTION Formation of arbuscular mycorrhizas can enhance plant uptake of immobile nutrients such as zinc (Zn) and phosphorus (P). Enhancement of Zn uptake by arbuscular mycorrhizal (AM) fungi on Zn-deficient soils has been studied previously, however, the quantity of Zn that is contributed by the AM pathway of uptake to the plant has not previously been reported for soil of any Zn status. METHODS We grew a mycorrhiza-defective mutant tomato (Solanum lycopersicum L.) genotype (rmc) and its mycorrhizal wild-type progenitor (76R) in pots containing a hyphal compartment (HC) accessible only by the external hyphae of AM fungi, and containing the radioisotope 65Zn. This was repeated at three soil Zn concentrations, ranging from low to high. We estimated the amount of Zn delivered via both the AM and direct (root) pathways. RESULTS Up to 24 % of Zn in the shoots of the AM plants was delivered via the AM pathway at the lowest soil Zn treatment. This decreased significantly, to 8 %, as soil Zn concentration increased. No 65Zn was detected in the tissues of the non-mycorrhizal genotype. CONCLUSIONS The relative contribution to shoot Zn by the AM pathway of uptake was highest when soil Zn was low, and decreased with increasing soil Zn concentration.-
dc.description.statementofresponsibilityStephanie J. Watts-Williams, F. Andrew Smith, Michael J. McLaughlin, Antonio F. Patti, Timothy R. Cavagnaro-
dc.language.isoen-
dc.publisherSpringer-
dc.rights© Springer International Publishing Switzerland 2015-
dc.source.urihttp://dx.doi.org/10.1007/s11104-014-2374-4-
dc.subjectArbuscular mycorrhizal (AM) uptake; Arbuscular mycorrhizas; Phosphorus; Plant nutrition; Tomato (Solanum lycopersicum L.); Zinc-
dc.titleHow important is the mycorrhizal pathway for plant Zn uptake?-
dc.typeJournal article-
dc.identifier.doi10.1007/s11104-014-2374-4-
dc.relation.granthttp://purl.org/au-research/grants/arc/FT120100463-
pubs.publication-statusPublished-
dc.identifier.orcidWatts-Williams, S. [0000-0003-3467-0662]-
dc.identifier.orcidMcLaughlin, M. [0000-0001-6796-4144]-
dc.identifier.orcidCavagnaro, T. [0000-0002-9922-5677]-
Appears in Collections:Agriculture, Food and Wine publications
Aurora harvest 2

Files in This Item:
File Description SizeFormat 
hdl_91003.pdfAccepted version687.26 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.