Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Myb-binding protein 1A (MYBBP1A) is essential for early embryonic development, controls cell cycle and mitosis, and acts as a tumor suppressor
Author: Mori, S.
Bernardi, R.
Laurent, A.
Resnati, M.
Crippa, A.
Gabrieli, A.
Keough, R.
Gonda, T.
Blasi, F.
Citation: PLoS One, 2012; 7(10):e39723-1-e39723-14
Publisher: Public Library of Science
Issue Date: 2012
ISSN: 1932-6203
Statement of
Silvia Mori, Rosa Bernardi, Audrey Laurent, Massimo Resnati, Ambra Crippa, Arianna Gabrieli, Rebecca Keough, Thomas J. Gonda, Francesco Blasi
Abstract: MYBBP1A is a predominantly nucleolar transcriptional regulator involved in rDNA synthesis and p53 activation via acetylation. However little further information is available as to its function. Here we report that MYBBP1A is developmentally essential in the mouse prior to blastocyst formation. In cell culture, down-regulation of MYBBP1A decreases the growth rate of wild type mouse embryonic stem cells, mouse embryo fibroblasts (MEFs) and of human HeLa cells, where it also promotes apoptosis. HeLa cells either arrest at G2/M or undergo delayed and anomalous mitosis. At mitosis, MYBBP1A is localized to a parachromosomal region and gene-expression profiling shows that its down-regulation affects genes controlling chromosomal segregation and cell cycle. However, MYBBP1A down-regulation increases the growth rate of the immortalized NIH3T3 cells. Such Mybbp1a down-regulated NIH3T3 cells are more susceptible to Ras-induced transformation and cause more potent Ras-driven tumors. We conclude that MYBBP1A is an essential gene with novel roles at the pre-mitotic level and potential tumor suppressor activity.
Keywords: Cells, Cultured; Hela Cells; NIH 3T3 Cells; Fibroblasts; Animals; Mice, Inbred C57BL; Mice, Knockout; Humans; Mice; Mice, Nude; Cell Transformation, Neoplastic; Carrier Proteins; Nucleocytoplasmic Transport Proteins; DNA-Binding Proteins; Tumor Suppressor Proteins; Nuclear Proteins; Cell Cycle; Mitosis; Apoptosis; Cell Proliferation; Gene Expression Regulation, Developmental; RNA Interference; Pregnancy; Female; Male; Embryonic Stem Cells; Embryo, Mammalian; HEK293 Cells
Rights: © Mori et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
RMID: 0030026559
DOI: 10.1371/journal.pone.0039723
Appears in Collections:Medicine publications

Files in This Item:
File Description SizeFormat 
hdl_94805.pdfPublished version1.08 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.