Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/97318
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Copy number variants in patients with intellectual disability affect the regulation of ARX transcription factor gene
Author: Ishibashi, M.
Manning, E.
Shoubridge, C.
Krecsmarik, M.
Hawkins, T.
Giacomotto, J.
Zhao, T.
Mueller, T.
Bader, P.
Cheung, S.
Stankiewicz, P.
Bain, N.
Hackett, A.
Reddy, C.
Mechaly, A.
Peers, B.
Wilson, S.
Lenhard, B.
Bally-Cuif, L.
Gecz, J.
et al.
Citation: Human Genetics, 2015; 134(11-12):1163-1182
Publisher: Springer
Issue Date: 2015
ISSN: 0340-6717
1432-1203
Statement of
Responsibility: 
Minaka Ishibashi, Elizabeth Manning, Cheryl Shoubridge, Monika Krecsmarik, Thomas A. Hawkins, Jean Giacomotto, Ting Zhao, Thomas Mueller, Patricia I. Bader, Sau W. Cheung, Pawel Stankiewicz, Nicole L. Bain, Anna Hackett, Chilamakuri C. S. Reddy, Alejandro S. Mechaly, Bernard Peers, Stephen W. Wilson, Boris Lenhard, Laure Bally-Cuif, Jozef Gecz, Thomas S. Becker, Silke Rinkwitz
Abstract: Protein-coding mutations in the transcription factor-encoding gene ARX cause various forms of intellectual disability (ID) and epilepsy. In contrast, variations in surrounding non-coding sequences are correlated with milder forms of non-syndromic ID and autism and had suggested the importance of ARX gene regulation in the etiology of these disorders. We compile data on several novel and some already identified patients with or without ID that carry duplications of ARX genomic region and consider likely genetic mechanisms underlying the neurodevelopmental defects. We establish the long-range regulatory domain of ARX and identify its brain region-specific autoregulation. We conclude that neurodevelopmental disturbances in the patients may not simply arise from increased dosage due to ARX duplication. This is further exemplified by a small duplication involving a non-functional ARX copy, but with duplicated enhancers. ARX enhancers are located within a 504-kb region and regulate expression specifically in the forebrain in developing and adult zebrafish. Transgenic enhancer-reporter lines were used as in vivo tools to delineate a brain region-specific negative and positive autoregulation of ARX. We find autorepression of ARX in the telencephalon and autoactivation in the ventral thalamus. Fluorescently labeled brain regions in the transgenic lines facilitated the identification of neuronal outgrowth and pathfinding disturbances in the ventral thalamus and telencephalon that occur when arxa dosage is diminished. In summary, we have established a model for how breakpoints in long-range gene regulation alter the expression levels of a target gene brain region-specifically, and how this can cause subtle neuronal phenotypes relating to the etiology of associated neuropsychiatric disease.
Keywords: Brain; Embryo, Nonmammalian; Animals; Animals, Genetically Modified; Zebrafish; Humans; Homeodomain Proteins; Transcription Factors; Case-Control Studies; Gene Expression Regulation, Developmental; Gene Duplication; Gene Dosage; Adult; Female; Male; DNA Copy Number Variations; Intellectual Disability
Description: Original investigation
Rights: © Springer-Verlag Berlin Heidelberg 2015
RMID: 0030035387
DOI: 10.1007/s00439-015-1594-x
Grant ID: http://purl.org/au-research/grants/nhmrc/1008077
http://purl.org/au-research/grants/nhmrc/628952
http://purl.org/au-research/grants/arc/FT120100086
http://purl.org/au-research/grants/nhmrc/1041920
Appears in Collections:Medicine publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.