Search for annihilating dark matter in the Sun with 3 years of IceCube data

dc.contributor.authorAartsen, M.
dc.contributor.authorAckermann, M.
dc.contributor.authorAdams, J.
dc.contributor.authorAguilar, J.
dc.contributor.authorAhlers, M.
dc.contributor.authorAhrens, M.
dc.contributor.authorAltmann, D.
dc.contributor.authorAndeen, K.
dc.contributor.authorAnderson, T.
dc.contributor.authorAnsseau, I.
dc.contributor.authorAnton, G.
dc.contributor.authorArchinger, M.
dc.contributor.authorArguelles, C.
dc.contributor.authorAuffenberg, J.
dc.contributor.authorAxani, S.
dc.contributor.authorBai, X.
dc.contributor.authorBarwick, S.
dc.contributor.authorBaum, V.
dc.contributor.authorBay, R.
dc.contributor.authorBeatty, J.
dc.contributor.authoret al.
dc.date.issued2017
dc.description.abstractWe present results from an analysis looking for dark matter annihilation in the Sun with the IceCube neutrino telescope. Gravitationally trapped dark matter in the Sun’s core can annihilate into Standard Model particles making the Sun a source of GeV neutrinos. IceCube is able to detect neutrinos with energies >100 GeV while its low-energy infill array DeepCore extends this to >10 GeV. This analysis uses data gathered in the austral winters between May 2011 and May 2014, corresponding to 532 days of livetime when the Sun, being below the horizon, is a source of up-going neutrino events, easiest to discriminate against the dominant background of atmospheric muons. The sensitivity is a factor of two to four better than previous searches due to additional statistics and improved analysis methods involving better background rejection and reconstructions. The resultant upper limits on the spin-dependent dark matter-proton scattering cross section reach down to 1.46×10−5 pb for a dark matter particle of mass 500 GeV annihilating exclusively into τ+τ−particles. These are currently the most stringent limits on the spin-dependent dark matter-proton scattering cross section for WIMP masses above 50 GeV.
dc.description.statementofresponsibilityM. G. Aartsen ... G. C. Hill ... S. Robertson ... A. Wallace … B. J. Whelan ... et al. (IceCube Collaboration)
dc.identifier.citationEuropean Physical Journal C: Particles and Fields, 2017; 77(3):146-1-146-12
dc.identifier.doi10.1140/epjc/s10052-017-4689-9
dc.identifier.issn1434-6044
dc.identifier.issn1434-6052
dc.identifier.urihttp://hdl.handle.net/2440/106892
dc.language.isoen
dc.publisherSpringer
dc.relation.grantARC
dc.rights© The Author(s) 2017. This article is published with open access at Springerlink. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecomm ons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.
dc.source.urihttps://doi.org/10.1140/epjc/s10052-017-4689-9
dc.titleSearch for annihilating dark matter in the Sun with 3 years of IceCube data
dc.typeJournal article
pubs.publication-statusPublished

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
hdl_106892.pdf
Size:
1.71 MB
Format:
Adobe Portable Document Format
Description:
Published version