Scaling laws of marine predator search behaviour

dc.contributor.authorSims, D.
dc.contributor.authorSouthall, E.
dc.contributor.authorHumphries, N.
dc.contributor.authorHays, G.
dc.contributor.authorBradshaw, C.
dc.contributor.authorPitchford, J.
dc.contributor.authorJames, A.
dc.contributor.authorAhmed, M.
dc.contributor.authorBrierley, A.
dc.contributor.authorHindell, M.
dc.contributor.authorMorritt, D.
dc.contributor.authorMusyl, M.
dc.contributor.authorRighton, D.
dc.contributor.authorShepard, E.
dc.contributor.authorWearmouth, V.
dc.contributor.authorWilson, R.
dc.contributor.authorWitt, M.
dc.contributor.authorMetcalfe, J.
dc.date.issued2008
dc.description.abstractMany free-ranging predators have to make foraging decisions with little, if any, knowledge of present resource distribution and availability. The optimal search strategy they should use to maximize encounter rates with prey in heterogeneous natural environments remains a largely unresolved issue in ecology. Lévy walks are specialized random walks giving rise to fractal movement trajectories that may represent an optimal solution for searching complex landscapes. However, the adaptive significance of this putative strategy in response to natural prey distributions remains untested. Here we analyse over a million movement displacements recorded from animal-attached electronic tags to show that diverse marine predators-sharks, bony fishes, sea turtles and penguins-exhibit Lévy-walk-like behaviour close to a theoretical optimum. Prey density distributions also display Lévy-like fractal patterns, suggesting response movements by predators to prey distributions. Simulations show that predators have higher encounter rates when adopting Lévy-type foraging in natural-like prey fields compared with purely random landscapes. This is consistent with the hypothesis that observed search patterns are adapted to observed statistical patterns of the landscape. This may explain why Lévy-like behaviour seems to be widespread among diverse organisms, from microbes to humans, as a 'rule' that evolved in response to patchy resource distributions.
dc.description.statementofresponsibilityDavid W. Sims, Emily J. Southall, Nicolas E. Humphries, Graeme C. Hays, Corey J. A. Bradshaw, Jonathan W. Pitchford, Alex James, Mohammed Z. Ahmed, Andrew S. Brierley, Mark A. Hindell, David Morritt, Michael K. Musyl, David Righton, Emily L. C. Shepard, Victoria J. Wearmouth, Rory P. Wilson, Matthew J. Witt & Julian D. Metcalfe
dc.identifier.citationNature, 2008; 451(7182):1098-1102
dc.identifier.doi10.1038/nature06518
dc.identifier.issn0028-0836
dc.identifier.issn1476-4687
dc.identifier.orcidBradshaw, C. [0000-0002-5328-7741]
dc.identifier.urihttp://hdl.handle.net/2440/52323
dc.language.isoen
dc.publisherNature Publishing Group
dc.source.urihttps://doi.org/10.1038/nature06518
dc.subjectAnimals
dc.subjectSpheniscidae
dc.subjectSharks
dc.subjectGadiformes
dc.subjectTuna
dc.subjectSeals, Earless
dc.subjectTurtles
dc.subjectEuphausiacea
dc.subjectProbability
dc.subjectPredatory Behavior
dc.subjectFeeding Behavior
dc.subjectMotor Activity
dc.subjectMarine Biology
dc.subjectEcosystem
dc.subjectPopulation Density
dc.subjectFractals
dc.subjectModels, Biological
dc.subjectOceans and Seas
dc.titleScaling laws of marine predator search behaviour
dc.typeJournal article
pubs.publication-statusPublished

Files