A customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene

dc.contributor.authorBurton, R.
dc.contributor.authorMa, G.
dc.contributor.authorBaumann, U.
dc.contributor.authorHarvey, A.
dc.contributor.authorShirley, N.
dc.contributor.authorTaylor, J.
dc.contributor.authorPettolino, F.
dc.contributor.authorBacic, A.
dc.contributor.authorBeatty, M.
dc.contributor.authorSimmons, C.
dc.contributor.authorDhugga, K.
dc.contributor.authorRafalski, J.
dc.contributor.authorTingey, S.
dc.contributor.authorFincher, G.
dc.date.issued2010
dc.description.abstractThe barley (Hordeum vulgare) brittle stem mutants, fs2, designated X054 and M245, have reduced levels of crystalline cellulose compared with their parental lines Ohichi and Shiroseto. A custom-designed microarray, based on long oligonucleotide technology and including genes involved in cell wall metabolism, revealed that transcript levels of very few genes were altered in the elongation zone of stem internodes, but these included a marked decrease in mRNA for the HvCesA4 cellulose synthase gene of both mutants. In contrast, the abundance of several hundred transcripts changed in the upper, maturation zones of stem internodes, which presumably reflected pleiotropic responses to a weakened cell wall that resulted from the primary genetic lesion. Sequencing of the HvCesA4 genes revealed the presence of a 964-bp solo long terminal repeat of a Copia-like retroelement in the first intron of the HvCesA4 genes of both mutant lines. The retroelement appears to interfere with transcription of the HvCesA4 gene or with processing of the mRNA, and this is likely to account for the lower crystalline cellulose content and lower stem strength of the mutants. The HvCesA4 gene maps to a position on chromosome 1H of barley that coincides with the previously reported position of fs2.
dc.description.statementofresponsibilityRachel A. Burton, Gang Ma, Ute Baumann, Andrew J. Harvey, Neil J. Shirley, Jillian Taylor, Filomena Pettolino, Antony Bacic, Mary Beatty, Carl R. Simmons, Kanwarpal S. Dhugga, J. Antoni Rafalski, Scott V. Tingey and Geoffrey B. Fincher
dc.identifier.citationPlant Physiology, 2010; 153(4):1716-1728
dc.identifier.doi10.1104/pp.110.158329
dc.identifier.issn0032-0889
dc.identifier.issn1532-2548
dc.identifier.orcidBurton, R. [0000-0002-0638-4709]
dc.identifier.orcidBaumann, U. [0000-0003-1281-598X]
dc.identifier.orcidShirley, N. [0000-0001-8114-9891]
dc.identifier.urihttp://hdl.handle.net/2440/62208
dc.language.isoen
dc.publisherAmer Soc Plant Physiologists
dc.relation.grantARC
dc.rights© 2010 American Society of Plant Biologists
dc.source.urihttps://doi.org/10.1104/pp.110.158329
dc.subjectCell Wall
dc.subjectHordeum
dc.subjectCellulose
dc.subjectGlucosyltransferases
dc.subjectPlant Proteins
dc.subjectRetroelements
dc.subjectRNA, Plant
dc.subjectOligonucleotide Array Sequence Analysis
dc.subjectChromosome Mapping
dc.subjectGene Expression Profiling
dc.subjectPhenotype
dc.subjectGenes, Plant
dc.subjectMolecular Sequence Data
dc.titleA customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene
dc.typeJournal article
pubs.publication-statusPublished

Files