High-contrast visualization of upconversion luminescence in mice using time-gating approach

dc.contributor.authorZheng, X.
dc.contributor.authorZhu, X.
dc.contributor.authorLu, Y.
dc.contributor.authorZhao, J.
dc.contributor.authorFeng, W.
dc.contributor.authorJia, G.
dc.contributor.authorWang, F.
dc.contributor.authorLi, F.
dc.contributor.authorJin, D.
dc.date.issued2016
dc.descriptionPublished: February 25, 2016
dc.description.abstractOptical imaging through the near-infrared (NIR) window provides deep penetration of light up to several centimeters into biological tissues. Capable of emitting 800 nm luminescence under 980 nm illumination, the recently developed upconversion nanoparticles (UCNPs) suggest a promising optical contrast agent for in vivo bioimaging. However, presently they require high-power lasers to excite when applied to small animals, leading to significant scattering background that limits the detection sensitivity as well as a detrimental thermal effect. In this work, we show that the time-gating approach implementing pulsed illumination from a NIR diode laser and time-delayed imaging synchronized via an optical chopper offers detection sensitivity more than 1 order of magnitude higher than the conventional approach using optical band-pass filters (S/N, 47321/6353 vs 5339/58), when imaging UCNPs injected into Kunming mice. The pulsed laser illumination (70 μs ON in 200 μs period) also reduces the overall thermal accumulation to 35% of that under the continuous-wave mode. Technical details are given on setting up the time-gating unit comprising an optical chopper, a pinhole, and a microscopy eyepiece. Being generally compatible with any camera, this provides a convenient and low cost solution to NIR animal imaging using UCNPs as well as other luminescent probes.
dc.description.statementofresponsibilityXianlin Zheng, Xingjun Zhu, Yiqing Lu, Jiangbo Zhao, Wei Feng, Guohua Jia, Fan Wang, Fuyou Li, and Dayong Jin
dc.identifier.citationAnalytical Chemistry, 2016; 88(7):3449-3454
dc.identifier.doi10.1021/acs.analchem.5b04626
dc.identifier.issn0003-2700
dc.identifier.issn1520-6882
dc.identifier.orcidZhao, J. [0000-0002-5883-6017]
dc.identifier.urihttp://hdl.handle.net/2440/99374
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.relation.granthttp://purl.org/au-research/grants/arc/FT130100517
dc.rights© 2016 American Chemical Society
dc.source.urihttps://doi.org/10.1021/acs.analchem.5b04626
dc.subjectAnimals
dc.subjectMice, Inbred Strains
dc.subjectMice
dc.subjectLuminescent Agents
dc.subjectLasers
dc.subjectTemperature
dc.subjectInfrared Rays
dc.subjectTime Factors
dc.subjectLuminescence
dc.subjectNanoparticles
dc.titleHigh-contrast visualization of upconversion luminescence in mice using time-gating approach
dc.typeJournal article
pubs.publication-statusPublished

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
hdl_99374.pdf
Size:
3.03 MB
Format:
Adobe Portable Document Format
Description:
Accepted version