Exotic twisted equivariant cohomology of loop spaces, twisted Bismut–Chern character and T-duality

dc.contributor.authorHan, F.
dc.contributor.authorMathai, V.
dc.date.issued2015
dc.description.abstractWe define exotic twisted T-equivariant cohomology for the loop space LZ of a smooth manifold Z via the invariant differential forms on LZ with coefficients in the (typically non-flat) holonomy line bundle of a gerbe, with differential an equivariantly flat superconnection. We introduce the twisted Bismut–Chern character form, a loop space refinement of the twisted Chern character form in Bouwknegt et al. (Commun Math Phys 228:17–49, 2002) and Mathai and Stevenson (Commun Math Phys 236:161–186, 2003), which represents classes in the completed periodic exotic twisted T-equivariant cohomology of LZ.We establish a localisation theorem for the completed periodic exotic twisted T-equivariant cohomology for loop spaces and apply it to establish T-duality in a background flux in type II String Theory from a loop space perspective.
dc.description.statementofresponsibilityFei Han, Varghese Mathai
dc.identifier.citationCommunications in Mathematical Physics, 2015; 337(1):127-150
dc.identifier.doi10.1007/s00220-014-2270-z
dc.identifier.issn0010-3616
dc.identifier.issn1432-0916
dc.identifier.orcidMathai, V. [0000-0002-1100-3595]
dc.identifier.urihttp://hdl.handle.net/2440/95222
dc.language.isoen
dc.publisherSpringer
dc.relation.granthttp://purl.org/au-research/grants/arc/DP110100072
dc.relation.granthttp://purl.org/au-research/grants/arc/DP130103924
dc.rights© Springer-Verlag Berlin Heidelberg 2015
dc.source.urihttps://doi.org/10.1007/s00220-014-2270-z
dc.titleExotic twisted equivariant cohomology of loop spaces, twisted Bismut–Chern character and T-duality
dc.typeJournal article
pubs.publication-statusPublished

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
RA_hdl_95222.pdf
Size:
342.74 KB
Format:
Adobe Portable Document Format
Description:
Restricted Access