Exotic twisted equivariant cohomology of loop spaces, twisted Bismut–Chern character and T-duality
dc.contributor.author | Han, F. | |
dc.contributor.author | Mathai, V. | |
dc.date.issued | 2015 | |
dc.description.abstract | We define exotic twisted T-equivariant cohomology for the loop space LZ of a smooth manifold Z via the invariant differential forms on LZ with coefficients in the (typically non-flat) holonomy line bundle of a gerbe, with differential an equivariantly flat superconnection. We introduce the twisted Bismut–Chern character form, a loop space refinement of the twisted Chern character form in Bouwknegt et al. (Commun Math Phys 228:17–49, 2002) and Mathai and Stevenson (Commun Math Phys 236:161–186, 2003), which represents classes in the completed periodic exotic twisted T-equivariant cohomology of LZ.We establish a localisation theorem for the completed periodic exotic twisted T-equivariant cohomology for loop spaces and apply it to establish T-duality in a background flux in type II String Theory from a loop space perspective. | |
dc.description.statementofresponsibility | Fei Han, Varghese Mathai | |
dc.identifier.citation | Communications in Mathematical Physics, 2015; 337(1):127-150 | |
dc.identifier.doi | 10.1007/s00220-014-2270-z | |
dc.identifier.issn | 0010-3616 | |
dc.identifier.issn | 1432-0916 | |
dc.identifier.orcid | Mathai, V. [0000-0002-1100-3595] | |
dc.identifier.uri | http://hdl.handle.net/2440/95222 | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.relation.grant | http://purl.org/au-research/grants/arc/DP110100072 | |
dc.relation.grant | http://purl.org/au-research/grants/arc/DP130103924 | |
dc.rights | © Springer-Verlag Berlin Heidelberg 2015 | |
dc.source.uri | https://doi.org/10.1007/s00220-014-2270-z | |
dc.title | Exotic twisted equivariant cohomology of loop spaces, twisted Bismut–Chern character and T-duality | |
dc.type | Journal article | |
pubs.publication-status | Published |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- RA_hdl_95222.pdf
- Size:
- 342.74 KB
- Format:
- Adobe Portable Document Format
- Description:
- Restricted Access