Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte

dc.contributor.authorRiglar, D.
dc.contributor.authorRichard, D.
dc.contributor.authorWilson, D.
dc.contributor.authorBoyle, M.
dc.contributor.authorDekiwadia, C.
dc.contributor.authorTurnbull, L.
dc.contributor.authorAngrisano, F.
dc.contributor.authorMarapana, D.
dc.contributor.authorRogers, K.
dc.contributor.authorWhitchurch, C.
dc.contributor.authorBeeson, J.
dc.contributor.authorCowman, A.
dc.contributor.authorRalph, S.
dc.contributor.authorBaum, J.
dc.date.issued2011
dc.description.abstractErythrocyte invasion by the merozoite is an obligatory stage in Plasmodium parasite infection and essential to malaria disease progression. Attempts to study this process have been hindered by the poor invasion synchrony of merozoites from the only in vitro culture-adapted human malaria parasite, Plasmodium falciparum. Using fluorescence, three-dimensional structured illumination, and immunoelectron microscopy of filtered merozoites, we analyze cellular and molecular events underlying each discrete step of invasion. Monitoring the dynamics of these events revealed that commitment to the process is mediated through merozoite attachment to the erythrocyte, triggering all subsequent invasion events, which then proceed without obvious checkpoints. Instead, coordination of the invasion process involves formation of the merozoite-erythrocyte tight junction, which acts as a nexus for rhoptry secretion, surface-protein shedding, and actomyosin motor activation. The ability to break down each molecular step allows us to propose a comprehensive model for the molecular basis of parasite invasion.
dc.description.statementofresponsibilityDavid T. Riglar, Dave Richard, Danny W. Wilson, Michelle J. Boyle, Chaitali Dekiwadia, Lynne Turnbull, Fiona Angrisano, Danushka S. Marapana, Kelly L. Rogers, Cynthia B. Whitchurch, James G. Beeson, Alan F. Cowman, Stuart A. Ralph, and Jake Baum
dc.identifier.citationCell Host and Microbe, 2011; 9(1):9-20
dc.identifier.doi10.1016/j.chom.2010.12.003
dc.identifier.issn1931-3128
dc.identifier.issn1934-6069
dc.identifier.orcidWilson, D. [0000-0002-5073-1405]
dc.identifier.urihttp://hdl.handle.net/2440/87530
dc.language.isoen
dc.publisherCell Press
dc.relation.granthttp://purl.org/au-research/grants/nhmrc/516763
dc.relation.granthttp://purl.org/au-research/grants/arc/FT0990350
dc.relation.granthttp://purl.org/au-research/grants/arc/FT0992317
dc.relation.granthttp://purl.org/au-research/grants/arc/FT100100112
dc.relation.granthttp://purl.org/au-research/grants/arc/FT0992317
dc.relation.granthttp://purl.org/au-research/grants/arc/FT100100112
dc.relation.isreplacedby2440/89931
dc.relation.isreplacedbyhttp://hdl.handle.net/2440/89931
dc.rights© 2011 Elsevier Inc.
dc.source.urihttps://doi.org/10.1016/j.chom.2010.12.003
dc.subjectErythrocytes
dc.subjectHumans
dc.subjectPlasmodium falciparum
dc.subjectMalaria, Falciparum
dc.subjectImaging, Three-Dimensional
dc.subjectMicroscopy, Immunoelectron
dc.subjectMicroscopy, Fluorescence
dc.subjectCell Adhesion
dc.subjectModels, Biological
dc.subjectMerozoites
dc.titleSuper-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte
dc.typeJournal article
pubs.publication-statusPublished

Files