Measure theory in noncommutative spaces

dc.contributor.authorLord, S.
dc.contributor.authorSukochev, F.
dc.date.issued2010
dc.description.abstractThe integral in noncommutative geometry (NCG) involves a non-standard trace called a Dixmier trace. The geometric origins of this integral are well known. From a measure-theoretic view, however, the formulation contains several difficulties. We review results concerning the technical features of the integral in NCG and some outstanding problems in this area. The review is aimed for the general user of NCG.
dc.description.statementofresponsibilitySteven Lord and Fedor Sukochev
dc.identifier.citationSymmetry, Integrability and Geometry: Methods and Applications, 2010; 6:1-36
dc.identifier.doi10.3842/SIGMA.2010.072
dc.identifier.issn1815-0659
dc.identifier.issn1815-0659
dc.identifier.orcidLord, S. [0000-0002-6142-5358]
dc.identifier.urihttp://hdl.handle.net/2440/61696
dc.language.isoen
dc.publisherNatsional'na Akademiya Nauk Ukrainy, Instytut Matematyky
dc.rightsCopyright status unknown
dc.source.urihttps://doi.org/10.3842/sigma.2010.072
dc.subjectDixmier trace
dc.subjectsingular trace
dc.subjectnoncommutative integration
dc.subjectnoncommutative geometry
dc.subjectLebesgue integral
dc.subjectnoncommutative residue
dc.titleMeasure theory in noncommutative spaces
dc.typeJournal article
pubs.publication-statusPublished

Files