The null-4A allele at the waxy locus in durum wheat affects pasta cooking quality

Date

2002

Authors

Sharma, R.
Sissons, M.
Rathjen, A.
Jenner, C.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Journal of Cereal Science, 2002; 35(3):287-297

Statement of Responsibility

Conference Name

Abstract

Granule-bound starch synthase, also known as the waxy protein catalyses the synthesis of amylose in wheat endosperm starch. In durum wheats, the genes encoding GBSS are present at the two Wx loci on chromosome 7A and 4A (a segment of 7B that has been translocated). Several null Wx-B1 (missing GBSS protein from chromosome 4A) durum lines were produced from crosses with null-4A bread wheats backcrossed to durum wheats. Semolina milled from 4 normal and 7 null-4A durum wheat lines grown over two seasons (1999 and 2000) in South Australia were analysed for amylose content, starch pasting properties as measured by the Rapid Viscoanalyzer (RVA), swelling power and starch damage, protein content and electrophoretic protein analysis. Spaghetti was prepared with a micro-scale extruder and the cooked pasta evaluated for cooking loss, firmness, stickiness and water absorption. The null-4A lines had significantly lower (ca. 5%) amylose content, higher starch peak viscosities and semolina swelling power. The pasta derived from the null-4A lines had lower cooking loss and in 1999 was more adhesive than the non-waxy lines. Cooking loss was correlated with amylose content, peak starch viscosity, swelling power of semolina and cooked pasta adhesiveness. Semolina swelling power was highly correlated with RVA peak viscosity. Waxy durum wheats appear to have an advantage over the normal types in terms of lower cooking loss, widely used as an indicator of pasta cooking quality.

School/Discipline

Dissertation Note

Provenance

Description

Access Status

Rights

License

Grant ID

Call number

Persistent link to this record