Dietary fish oil dose-response effects on ileal phospholipid fatty acids and contractility
Date
2005
Authors
Patten, Glen Stephen
Adams, Michael J.
Dallimore, Julie A.
Abeywardena, Mahinda Y.
Editors
Advisors
Journal Title
Journal ISSN
Volume Title
Type:
Journal article
Citation
Lipids, 2005; 40(9):925-929
Statement of Responsibility
Glen S. Patten, Michael J. Adams, A. Dallimore and Mahinda Y. Abeywardena
Conference Name
Abstract
We have reported that dietary fish oil (FO) leads to the incorporation of long-chain n−3 PUFA into the gut tissue of small animal models, affecting contractility, particularly of rat ileum. This study examined the FO dose response for the incorporation of n−3 PUFA into ileal tissue and how this correlated with in vitro contractility. Groups of ten to twelve 13-wk-old Wistar-Kyoto rats were fed 0, 1, 2.5, and 5% FO-supplemented diets balanced with sunflower seed oil for 4 wk, after which ileal total phospholipid FA were determined and in vitro contractility assessed. For the total phospholipid fraction, increasing the dietary FO levels led to a significant increase first evident at 1% FO, with a stepwise, nonsaturating six-fold increase in n−3 PUFA as EPA (20∶5n−3), DPA (docosapentaenoic acid, 22∶5n−3), and DHA, but mainly as DHA (22∶6n−3), replacing the n−6 PUFA linoleic acid (18∶2n−6) and arachidonic acid (20∶4n−6) over the dosage range. There was no difference in KCl-induced depolarization-driven contractility. However, a significant increase in receptor-dependent maximal contractility occurred at 1% FO for carbachol and at 2.5% FO for prostaglandin E2, with a concomitant increase in sensitivity for prostaglandin E2 at 2.5 and 5% FO. These results demonstrate that significant increases in ileal membrane n−3 PUFA occurred at relatively low doses of dietary FO, with differential receptor-dependent increases in contractility observed for muscarinic and prostanoid agonists.
School/Discipline
School of Medical Sciences : Pharmacology