A structure-function analysis of the left ventricle
Date
2016
Authors
Snelling, E.
Seymour, R.
Green, J.
Meyer, L.
Fuller, A.
Haw, A.
Mitchell, D.
Farrell, A.
Costello, M.
Izwan, A.
Editors
Advisors
Journal Title
Journal ISSN
Volume Title
Type:
Journal article
Citation
Journal of Applied Physiology, 2016; 121(4):900-909
Statement of Responsibility
Edward P. Snelling, Roger S. Seymour, J. E. F. Green, Leith C. R. Meyer, Andrea Fuller, Anna Haw, Duncan Mitchell, Anthony P. Farrell, Mary-Ann Costello, Adian Izwan, Margaret Badenhorst, Shane K. Maloney
Conference Name
Abstract
Left ventricular external mechanical work rate was calculated from cardiac output and systemic mean arterial blood pressure in resting sheep (Ovis aries; N = 4) and goats (Capra hircus; N = 4) under mild sedation, followed by perfusion-fixation of the left ventricle, and quantification of the cardiac capillary-tissue geometry and cardiomyocyte ultrastructure. The investigation was extended to heavy exercise by increasing cardiac work according to published hemodynamics during sustained treadmill exercise. Left ventricular work rate averaged 0.017 W cm(-3) of tissue at rest, and was estimated to increase to ~0.060 W cm(-3) during heavy exercise. We predicted that oxygen consumption increases from 195 nmol O2 s(-1) cm(-3) at rest, to ~600 nmol O2 s(-1) cm(-3) during heavy exercise, which is within 90% of the demand rate and consistent with work remaining predominantly aerobic. Mitochondria represent 21 - 22% of cardiomyocyte volume and consume oxygen at a rate of 1150 nmol O2 s(-1) cm(-3) of mitochondria at rest, and ~3600 nmol O2 s(-1) cm(-3) during heavy exercise, which is within 80% of maximum in vitro rates and consistent with mitochondria operating near their functional limits. Myofibrils represent 65 - 66% of cardiomyocyte volume, and according to a Laplacian model of the left ventricular chamber, generate peak fiber tensions between ~54 and 62 kPa at rest and during heavy exercise, which is less than maximum tension of isolated cardiac tissue (120 - 140 kPa), and is explained by an apparent reserve capacity for tension development built into the left ventricle.
School/Discipline
Dissertation Note
Provenance
Description
Access Status
Rights
Copyright © 2016 the American Physiological Society