The Mx/G/1 queue with queue length dependent service times
dc.contributor.author | Choi, Bong Dae | en |
dc.contributor.author | Kim, Yeong Cheol | en |
dc.contributor.author | Shin, Yang Woo | en |
dc.contributor.author | Pearce, Charles Edward Miller | en |
dc.contributor.school | School of Mathematical Sciences : Applied Mathematics | en |
dc.date.issued | 2001 | en |
dc.description.abstract | We deal with the MX/G/1 queue where service times depend on the queue length at the service initiation. By using Markov renewal theory, we derive the queue length distribution at departure epochs. We also obtain the transient queue length distribution at time t and its limiting distribution and the virtual waiting time distribution. The numerical results for transient mean queue length and queue length distributions are given. | en |
dc.description.statementofresponsibility | Bong Dae Choi, Yeong Cheol Kim, Yang Woo Shin, and Charles E. M. Pearce | en |
dc.identifier.citation | J.A.M.S.A. Journal of Applied Mathematics and Stochastic Analysis, 2001; 14(4):399-419 | en |
dc.identifier.doi | 10.1155/S104895330100034X | en |
dc.identifier.issn | 1048-9533 | en |
dc.identifier.uri | http://hdl.handle.net/2440/468 | |
dc.language.iso | en | en |
dc.publisher | North Atlantic Science | en |
dc.rights | © 2001 by North Atlantic Science Publishing Company | en |
dc.subject | MX/G/1 Queue, Queue Length Dependent Service Time, Transient Queue Length Distribution, Waiting Time Distribution. | en |
dc.title | The Mx/G/1 queue with queue length dependent service times | en |
dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1