Enhanced T-ray signal classification using wavelet preprocessing
dc.contributor.author | Yin, X. | |
dc.contributor.author | Kong, K. | |
dc.contributor.author | Lim, J. | |
dc.contributor.author | Ng, B. | |
dc.contributor.author | Ferguson, B. | |
dc.contributor.author | Mickan, S. | |
dc.contributor.author | Abbott, D. | |
dc.date.issued | 2007 | |
dc.description | The original publication is available at www.springerlink.com | |
dc.description.abstract | This study demonstrates the application of one-dimensional discrete wavelet transforms in the classification of T-ray pulsed signals. Fast Fourier transforms (FFTs) are used as a feature extraction tool and a Mahalanobis distance classifier is employed for classification. Soft threshold wavelet shrinkage de-noising is used and plays an important role in de-noising and reconstruction of T-ray pulsed signals. An iterative algorithm is applied to obtain three optimal frequency components and to achieve preferred classification performance. | |
dc.description.statementofresponsibility | X. X. Yin, K. M. Kong, J. W. Lim, B. W.-H. Ng, B. Ferguson, S. P. Mickan and D. Abbott | |
dc.identifier.citation | Medical and Biological Engineering and Computing, 2007; 45(6):611-616 | |
dc.identifier.doi | 10.1007/s11517-007-0185-y | |
dc.identifier.issn | 0140-0118 | |
dc.identifier.issn | 1741-0444 | |
dc.identifier.orcid | Ng, B. [0000-0002-8316-4996] | |
dc.identifier.orcid | Abbott, D. [0000-0002-0945-2674] | |
dc.identifier.uri | http://hdl.handle.net/2440/39634 | |
dc.language.iso | en | |
dc.publisher | Peter Peregrinus Ltd | |
dc.source.uri | http://www.springerlink.com/content/u30728g5774135k0/ | |
dc.subject | Mahalanobis distance classifier | |
dc.subject | Wavelet denoising | |
dc.subject | T-rays | |
dc.title | Enhanced T-ray signal classification using wavelet preprocessing | |
dc.type | Journal article | |
pubs.publication-status | Published |