Anonymizing graphs against weight-based attacks
Date
2010
Authors
Li, Y.
Shen, H.
Editors
Advisors
Journal Title
Journal ISSN
Volume Title
Type:
Conference paper
Citation
Proceedings - 10th IEEE International Conference on Data Mining Workshops: ICDMW 2010 / Wei Fan, Wynne Hsu, G. I. Webb, Bing Liu, Chengqi Zhang, D. Gunopulos, Xindong Wu (eds.): pp.491-498
Statement of Responsibility
Yidong Li and Hong Shen
Conference Name
IEEE International Conference on Data Mining Workshops (10th : 2010 : Sydney, NSW)
Abstract
The increasing popularity of graph data, such as social and online communities, has initiated a prolific research area in knowledge discovery and data mining. As more realworld graphs are released publicly, there is growing concern about privacy breaching for the entities involved. An adversary may reveal identities of individuals in a published graph by having the topological structure and/or basic graph properties as background knowledge. Many previous studies addressing such attack as identity disclosure, however, concentrate on preserving privacy in simple graph data only. In this paper, we consider the identity disclosure problem in weighted graphs. The motivation is that, a weighted graph can introduce much more unique information than its simple version, which makes the disclosure easier. We first formalize a general anonymization model to deal with weight-based attacks. Then two concrete attacks are discussed based on weight properties of a graph, including the sum and the set of adjacent weights for each vertex. We also propose a complete solution for the weight anonymization problem to prevent a graph from both attacks. Our approaches are efficient and practical, and have been validated by extensive experiments on both synthetic and real-world datasets.
School/Discipline
Dissertation Note
Provenance
Description
Access Status
Rights
© 2010 IEEE