Characterising hyperbolic hyperplanes of a non-singular quadric in PG (4, q)

dc.contributor.authorBarwick, S.G.
dc.contributor.authorHui, A.M.W.
dc.contributor.authorJackson, W.A.
dc.contributor.authorSchillewaert, J.
dc.date.issued2020
dc.description.abstractLet H be a non-empty set of hyperplanes in PG(4,q), q even, such that every point of PG(4,q) lies in either 0, 1/2q³ or 1/2(q³+q²²) hyperplanes of H, and every plane of PG(4,q) lies in 0 or at least 1/2q hyperplanes of H. Then H is the set of all hyperplanes which meet a given non-singular quadric Q(4, q) in a hyperbolic quadric.
dc.description.statementofresponsibilityS.G. Barwick, Alice M.W. Hui, Wen-Ai Jackson, Jeroen Schillewaert
dc.identifier.citationDesigns, Codes and Cryptography, 2020; 88(1):33-39
dc.identifier.doi10.1007/s10623-019-00669-y
dc.identifier.issn0925-1022
dc.identifier.issn1573-7586
dc.identifier.orcidBarwick, S.G. [0000-0001-9492-0323]
dc.identifier.orcidJackson, W.A. [0000-0002-0894-0916]
dc.identifier.urihttp://hdl.handle.net/2440/123368
dc.language.isoen
dc.publisherSpringer Nature
dc.rights© Springer Science+Business Media, LLC, part of Springer Nature 2019
dc.source.urihttps://doi.org/10.1007/s10623-019-00669-y
dc.subjectProjective geometry; quadrics; hyperplanes
dc.titleCharacterising hyperbolic hyperplanes of a non-singular quadric in PG (4, q)
dc.typeJournal article
pubs.publication-statusPublished

Files