Characterising hyperbolic hyperplanes of a non-singular quadric in PG (4, q)
dc.contributor.author | Barwick, S.G. | |
dc.contributor.author | Hui, A.M.W. | |
dc.contributor.author | Jackson, W.A. | |
dc.contributor.author | Schillewaert, J. | |
dc.date.issued | 2020 | |
dc.description.abstract | Let H be a non-empty set of hyperplanes in PG(4,q), q even, such that every point of PG(4,q) lies in either 0, 1/2q³ or 1/2(q³+q²²) hyperplanes of H, and every plane of PG(4,q) lies in 0 or at least 1/2q hyperplanes of H. Then H is the set of all hyperplanes which meet a given non-singular quadric Q(4, q) in a hyperbolic quadric. | |
dc.description.statementofresponsibility | S.G. Barwick, Alice M.W. Hui, Wen-Ai Jackson, Jeroen Schillewaert | |
dc.identifier.citation | Designs, Codes and Cryptography, 2020; 88(1):33-39 | |
dc.identifier.doi | 10.1007/s10623-019-00669-y | |
dc.identifier.issn | 0925-1022 | |
dc.identifier.issn | 1573-7586 | |
dc.identifier.orcid | Barwick, S.G. [0000-0001-9492-0323] | |
dc.identifier.orcid | Jackson, W.A. [0000-0002-0894-0916] | |
dc.identifier.uri | http://hdl.handle.net/2440/123368 | |
dc.language.iso | en | |
dc.publisher | Springer Nature | |
dc.rights | © Springer Science+Business Media, LLC, part of Springer Nature 2019 | |
dc.source.uri | https://doi.org/10.1007/s10623-019-00669-y | |
dc.subject | Projective geometry; quadrics; hyperplanes | |
dc.title | Characterising hyperbolic hyperplanes of a non-singular quadric in PG (4, q) | |
dc.type | Journal article | |
pubs.publication-status | Published |