Conversion of neutral C₂COC₂ to C₄CO. Potential interstellar molecules
Date
2000
Authors
Dua, S.
Blanksby, S.
Bowie, J.
Editors
Advisors
Journal Title
Journal ISSN
Volume Title
Type:
Journal article
Citation
International Journal of Mass Spectrometry, 2000; 195/196:45-54
Statement of Responsibility
Suresh Dua, Stephen J. Blanksby and John H. Bowie
Conference Name
Abstract
Both [C<inf>4</inf>CO]<sup>-.</sup> and [C<inf>2</inf>COC<inf>2</inf>]<sup>-.</sup> are formed in the ion source of a VG ZAB 2HF mass spectrometer by the respective processes HO<sup>-</sup> + Me<inf>3</inf>Si-C≡C-C≡CO-CMe<inf>3</inf> → [C<inf>4</inf>CO]<sup>-.</sup> + Me<inf>3</inf>SiOH + Me<inf>3</inf>C<sup>.</sup>, and Me<inf>3</inf>Si-C≡CO-C-SiMe<inf>3</inf> + SF<inf>6</inf> + e → [C<inf>2</inf>COC<inf>2</inf>]<sup>-.</sup> + 2Me<inf>3</inf>SiF + SF<inf>4</inf>. The second synthetic pathway involves a double desilylation reaction similar to that first reported by Squires. The two radical anion isomers produce different and characteristic charge reversal spectra upon collisional activation. In contrast, following collision induced charge stripping, both radical anions produce neutral C<inf>4</inf>CO as evidenced by the identical neutralisation reionisation (<sup>-</sup>NR<sup>+</sup>) spectra. The exclusive rearrangement of C<inf>2</inf> <sup>13</sup>COC<inf>2</inf> to C<inf>4</inf> <sup>13</sup>CO indicates that <sup>12</sup>C-O bond formation is not involved in the reaction. Ab initio calculations (at the RCCSD(T)/aug-cc-pVDZ//B3LYP/6-31G* level of theory) have been used to investigate the reaction coordinates on the potential surfaces for both singlet and triplet rearrangements of neutral C<inf>2</inf>COC<inf>2</inf>. Singlet C<inf>2</inf>COC<inf>2</inf> is less stable than singlet C<inf>4</inf>CO by 78.8 kcal mol<sup>-1</sup> and requires only 8.5 kcal mol<sup>-1</sup> of additional energy to effect conversion to C<inf>4</inf>CO by a rearrangement sequence involving three C-C ring opening/cyclisation steps. (C) 2000 Elsevier Science B.V.
School/Discipline
Dissertation Note
Provenance
Description
Copyright © 2000 Elsevier Science B.V. All rights reserved.