Linking defects, hierarchical porosity generation and desalination performance in metal-organic frameworks

dc.contributor.authorLiang, W.
dc.contributor.authorLi, L.
dc.contributor.authorHou, J.
dc.contributor.authorShepherd, N.
dc.contributor.authorBennett, T.
dc.contributor.authorD'Alessandro, D.
dc.contributor.authorChen, V.
dc.date.issued2018
dc.description.abstractComposite membranes with defective metal–organic frameworks (MOFs) connect the emerging fields of MOF topological modification, MOF-polymer interfacial engineering and composite material functionalization. Although defective MOFs can be fabricated via thermal or chemical treatment, the relationship between hierarchical MOF structure and their performance in a polymeric membrane matrix has so far not been investigated. Here we show how a modulator fumarate-based MIL-53(Al) microwave synthesis process results in defective MOFs. This ligand replacement process leads to materials with hierarchical porosity, which creates a higher mesopore volume and Brønsted acidity without compromising the crystalline structure and pH stability. Compared with stoichiometric ratios, increasing the reaction time leads to more effective defect generation. The subsequent incorporation of defective MOFs into polyvinyl alcohol pervaporation membranes can effectively promote the fresh water productivity in concentrated brine treatment, with salt rejection of >99.999%. The membranes also have good long-term operational stability with effective antifouling behavior. We provide evidence that topological engineering of the MOF surface is related to their physical and chemical behaviors in a polymeric matrix, opening up the possibility of MOF defect engineering to realize selective separations, catalysis and sensing within a polymeric matrix.
dc.description.statementofresponsibilityWeibin Liang, Lin Li, Jingwei Hou, Nicholas D. Shepherd, Thomas D. Bennett, Deanna M. D'Alessandro and Vicki Chen
dc.identifier.citationChemical Science, 2018; 9(14):3508-3516
dc.identifier.doi10.1039/c7sc05175a
dc.identifier.issn2041-6520
dc.identifier.issn2041-6539
dc.identifier.urihttp://hdl.handle.net/2440/113876
dc.language.isoen
dc.publisherRoyal Society of Chemistry
dc.relation.granthttp://purl.org/au-research/grants/arc/DP130104048
dc.relation.grantRP02-035
dc.relation.grantCO2MOF
dc.relation.grantUnassingned
dc.relation.grantUnassingned
dc.rightsThis journal is © The Royal Society of Chemistry 2018. Open Access Article. Published on 05 March 2018. Downloaded on 8/23/2018 5:05:54 AM. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
dc.source.urihttps://doi.org/10.1039/c7sc05175a
dc.titleLinking defects, hierarchical porosity generation and desalination performance in metal-organic frameworks
dc.typeJournal article
pubs.publication-statusPublished

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
hdl_113876.pdf
Size:
931.3 KB
Format:
Adobe Portable Document Format