Delocalized Spectra of Landau Operators on Helical Surfaces

dc.contributor.authorKubota, Y.
dc.contributor.authorLudewig, M.
dc.contributor.authorThiang, G.C.
dc.date.issued2022
dc.descriptionPublished online: 15 July 2022
dc.description.abstractOn a flat surface, the Landau operator, or quantum Hall Hamiltonian, has spectrum a discrete set of infinitely-degenerate Landau levels. We consider surfaces with asymptotically constant curvature away from a possibly non-compact submanifold, the helicoid being our main example. The Landau levels remain isolated, provided the spectrum is considered in an appropriate Hilbert module over the Roe algebra of the surface delocalized away from the submanifold. Delocalized coarse indices may then be assigned to them. As an application, we prove that Landau operators on helical surfaces have no spectral gaps above the lowest Landau level.
dc.description.statementofresponsibilityYosuke Kubota, Matthias Ludewig, Guo Chuan Thiang
dc.identifier.citationCommunications in Mathematical Physics, 2022; 395(3):1211-1242
dc.identifier.doi10.1007/s00220-022-04452-4
dc.identifier.issn0010-3616
dc.identifier.issn1432-0916
dc.identifier.orcidLudewig, M. [0000-0001-9986-4308]
dc.identifier.orcidThiang, G.C. [0000-0003-0268-0065]
dc.identifier.urihttps://hdl.handle.net/2440/136050
dc.language.isoen
dc.publisherSpringer-Verlag
dc.relation.granthttp://purl.org/au-research/grants/arc/DP200100729
dc.rights© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
dc.source.urihttps://doi.org/10.1007/s00220-022-04452-4
dc.titleDelocalized Spectra of Landau Operators on Helical Surfaces
dc.typeJournal article
pubs.publication-statusPublished

Files