Cell type of origin dictates the route to pluripotency

dc.contributor.authorNefzger, C.M.
dc.contributor.authorRossello, F.J.
dc.contributor.authorChen, J.
dc.contributor.authorLiu, X.
dc.contributor.authorKnaupp, A.S.
dc.contributor.authorFiras, J.
dc.contributor.authorPaynter, J.M.
dc.contributor.authorPflueger, J.
dc.contributor.authorBuckberry, S.
dc.contributor.authorLim, S.M.
dc.contributor.authorWilliams, B.
dc.contributor.authorAlaei, S.
dc.contributor.authorFaye-Chauhan, K.
dc.contributor.authorPetretto, E.
dc.contributor.authorNilsson, S.K.
dc.contributor.authorLister, R.
dc.contributor.authorRamialison, M.
dc.contributor.authorPowell, D.R.
dc.contributor.authorRackham, O.J.L.
dc.contributor.authorPolo, J.M.
dc.date.issued2017
dc.description.abstractOur current understanding of induced pluripotent stem cell (iPSC) generation has almost entirely been shaped by studies performed on reprogramming fibroblasts. However, whether the resulting model universally applies to the reprogramming process of other cell types is still largely unknown. By characterizing and profiling the reprogramming pathways of fibroblasts, neutrophils, and keratinocytes, we unveil that key events of the process, including loss of original cell identity, mesenchymal to epithelial transition, the extent of developmental reversion, and reactivation of the pluripotency network, are to a large degree cell-type specific. Thus, we reveal limitations for the use of fibroblasts as a universal model for the study of the reprogramming process and provide crucial insights about iPSC generation from alternative cell sources.
dc.description.statementofresponsibilityChristian M. Nefzger, Fernando J. Rossello, Joseph Chen, David R. Powell, Owen J.L. Rackham Jose M. Polo … et al.
dc.identifier.citationCell reports, 2017; 21(10):2649-2660
dc.identifier.doi10.1016/j.celrep.2017.11.029
dc.identifier.issn2211-1247
dc.identifier.issn2211-1247
dc.identifier.orcidPolo, J.M. [0000-0002-2531-778X]
dc.identifier.urihttps://hdl.handle.net/2440/133488
dc.language.isoen
dc.publisherCell Press
dc.relation.granthttp://purl.org/au-research/grants/nhmrc/1051309
dc.relation.granthttp://purl.org/au-research/grants/nhmrc/1092280
dc.rights© 2017 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
dc.source.urihttps://doi.org/10.1016/j.celrep.2017.11.029
dc.subjectNeutrophils
dc.subjectFibroblasts
dc.subjectKeratinocytes
dc.subjectAnimals
dc.subjectHumans
dc.subjectFlow Cytometry
dc.subjectOctamer Transcription Factor-3
dc.subjectEarly Growth Response Protein 1
dc.subjectInduced Pluripotent Stem Cells
dc.subjectCellular Reprogramming
dc.subject.meshNeutrophils
dc.subject.meshFibroblasts
dc.subject.meshKeratinocytes
dc.subject.meshAnimals
dc.subject.meshHumans
dc.subject.meshFlow Cytometry
dc.subject.meshOctamer Transcription Factor-3
dc.subject.meshEarly Growth Response Protein 1
dc.subject.meshInduced Pluripotent Stem Cells
dc.subject.meshCellular Reprogramming
dc.titleCell type of origin dictates the route to pluripotency
dc.typeJournal article
pubs.publication-statusPublished

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
hdl_133488.pdf
Size:
10.79 MB
Format:
Adobe Portable Document Format
Description:
Published version