Multiscale covariance fields, local scales, and shape transforms
dc.contributor.author | Martinez, Diego H. Diaz | en |
dc.contributor.author | Memoli, Facundo | en |
dc.contributor.author | Mio, Washington | en |
dc.contributor.conference | International SEE Conference on Geometric Science of Information (1st : 2013 : Paris) | en |
dc.contributor.school | School of Computer Science | en |
dc.date.issued | 2013 | en |
dc.description.abstract | We introduce the notion of multiscale covariance tensor fields associated with a probability measure on Euclidean space and use these fields to define local scales at a point and to construct shape transforms. Local scales at x may be interpreted as scales at which key geometric features of the data organization around x are revealed. Shape transforms are employed to identify points that are most salient in terms of the local-global shape of a probability distribution, yielding a compact summary of the geometry of the distribution. | en |
dc.description.statementofresponsibility | Diego H. Diaz Martinez, Facundo Mémoli, and Washington Mio | en |
dc.identifier.citation | Lecture Notes in Computer Science, 2013 / F. Nielsen, F. Barbaresco (eds.), pp.794-801 | en |
dc.identifier.doi | 10.1007/978-3-642-40020-9_89 | en |
dc.identifier.issn | 0302-9743 | en |
dc.identifier.uri | http://hdl.handle.net/2440/83724 | |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.rights | © Springer-Verlag Berlin Heidelberg 2013 | en |
dc.subject | covariance fields; local scales; shape features; shape transforms | en |
dc.title | Multiscale covariance fields, local scales, and shape transforms | en |
dc.type | Conference paper | en |