Self-supervised learning for single view depth and surface normal estimation
dc.contributor.author | Zhan, H. | |
dc.contributor.author | Weerasekera, C.S. | |
dc.contributor.author | Garg, R. | |
dc.contributor.author | Reid, I. | |
dc.contributor.conference | IEEE International Conference on Robotics and Automation (ICRA) (20 May 2019 - 24 May 2019 : Montreal, Canada) | |
dc.contributor.editor | Howard, A. | |
dc.contributor.editor | Althoefer, K. | |
dc.contributor.editor | Arai, F. | |
dc.contributor.editor | Arrichiello, F. | |
dc.contributor.editor | Caputo, B. | |
dc.contributor.editor | Castellanos, J. | |
dc.contributor.editor | Hauser, K. | |
dc.contributor.editor | Isler, V. | |
dc.contributor.editor | Kim, J. | |
dc.contributor.editor | Liu, H. | |
dc.contributor.editor | Oh, P. | |
dc.contributor.editor | Santos, V. | |
dc.contributor.editor | Scaramuzza, D. | |
dc.contributor.editor | Ude, A. | |
dc.contributor.editor | Voyles, R. | |
dc.contributor.editor | Yamane, K. | |
dc.contributor.editor | Okamura, A. | |
dc.date.issued | 2019 | |
dc.description.abstract | In this work we present a self-supervised learning framework to simultaneously train two Convolutional Neural Networks (CNNs) to predict depth and surface normals from a single image. In contrast to most existing frameworks which represent outdoor scenes as fronto-parallel planes at piecewise smooth depth, we propose to predict depth with surface orientation while assuming that natural scenes have piece-wise smooth normals. We show that a simple depth-normal consistency as a soft-constraint on the predictions is sufficient and effective for training both these networks simultaneously. The trained normal network provides state-of-the-art predictions while the depth network, relying on much realistic smooth normal assumption, outperforms the traditional self-supervised depth prediction network by a large margin on the KITTI benchmark. | |
dc.description.statementofresponsibility | Huangying Zhan, Chamara Saroj Weerasekera, Ravi Garg, Ian Reid | |
dc.identifier.citation | IEEE International Conference on Robotics and Automation, 2019 / Howard, A., Althoefer, K., Arai, F., Arrichiello, F., Caputo, B., Castellanos, J., Hauser, K., Isler, V., Kim, J., Liu, H., Oh, P., Santos, V., Scaramuzza, D., Ude, A., Voyles, R., Yamane, K., Okamura, A. (ed./s), vol.2019-May, pp.4811-4817 | |
dc.identifier.doi | 10.1109/ICRA.2019.8793984 | |
dc.identifier.isbn | 153866027X | |
dc.identifier.isbn | 9781538660263 | |
dc.identifier.issn | 1050-4729 | |
dc.identifier.issn | 2577-087X | |
dc.identifier.orcid | Garg, R. [0000-0002-9422-8086] | |
dc.identifier.orcid | Reid, I. [0000-0001-7790-6423] | |
dc.identifier.uri | http://hdl.handle.net/2440/124480 | |
dc.language.iso | en | |
dc.publisher | IEEE | |
dc.publisher.place | Piscataway, NJ. | |
dc.relation.grant | http://purl.org/au-research/grants/arc/FL130100102 | |
dc.relation.grant | http://purl.org/au-research/grants/arc/CE140100016 | |
dc.relation.ispartofseries | IEEE International Conference on Robotics and Automation ICRA | |
dc.rights | ©2019 IEEE | |
dc.source.uri | https://ieeexplore.ieee.org/xpl/conhome/8780387/proceeding | |
dc.title | Self-supervised learning for single view depth and surface normal estimation | |
dc.type | Conference paper | |
pubs.publication-status | Published |