Self-supervised learning for single view depth and surface normal estimation

dc.contributor.authorZhan, H.
dc.contributor.authorWeerasekera, C.S.
dc.contributor.authorGarg, R.
dc.contributor.authorReid, I.
dc.contributor.conferenceIEEE International Conference on Robotics and Automation (ICRA) (20 May 2019 - 24 May 2019 : Montreal, Canada)
dc.contributor.editorHoward, A.
dc.contributor.editorAlthoefer, K.
dc.contributor.editorArai, F.
dc.contributor.editorArrichiello, F.
dc.contributor.editorCaputo, B.
dc.contributor.editorCastellanos, J.
dc.contributor.editorHauser, K.
dc.contributor.editorIsler, V.
dc.contributor.editorKim, J.
dc.contributor.editorLiu, H.
dc.contributor.editorOh, P.
dc.contributor.editorSantos, V.
dc.contributor.editorScaramuzza, D.
dc.contributor.editorUde, A.
dc.contributor.editorVoyles, R.
dc.contributor.editorYamane, K.
dc.contributor.editorOkamura, A.
dc.date.issued2019
dc.description.abstractIn this work we present a self-supervised learning framework to simultaneously train two Convolutional Neural Networks (CNNs) to predict depth and surface normals from a single image. In contrast to most existing frameworks which represent outdoor scenes as fronto-parallel planes at piecewise smooth depth, we propose to predict depth with surface orientation while assuming that natural scenes have piece-wise smooth normals. We show that a simple depth-normal consistency as a soft-constraint on the predictions is sufficient and effective for training both these networks simultaneously. The trained normal network provides state-of-the-art predictions while the depth network, relying on much realistic smooth normal assumption, outperforms the traditional self-supervised depth prediction network by a large margin on the KITTI benchmark.
dc.description.statementofresponsibilityHuangying Zhan, Chamara Saroj Weerasekera, Ravi Garg, Ian Reid
dc.identifier.citationIEEE International Conference on Robotics and Automation, 2019 / Howard, A., Althoefer, K., Arai, F., Arrichiello, F., Caputo, B., Castellanos, J., Hauser, K., Isler, V., Kim, J., Liu, H., Oh, P., Santos, V., Scaramuzza, D., Ude, A., Voyles, R., Yamane, K., Okamura, A. (ed./s), vol.2019-May, pp.4811-4817
dc.identifier.doi10.1109/ICRA.2019.8793984
dc.identifier.isbn153866027X
dc.identifier.isbn9781538660263
dc.identifier.issn1050-4729
dc.identifier.issn2577-087X
dc.identifier.orcidGarg, R. [0000-0002-9422-8086]
dc.identifier.orcidReid, I. [0000-0001-7790-6423]
dc.identifier.urihttp://hdl.handle.net/2440/124480
dc.language.isoen
dc.publisherIEEE
dc.publisher.placePiscataway, NJ.
dc.relation.granthttp://purl.org/au-research/grants/arc/FL130100102
dc.relation.granthttp://purl.org/au-research/grants/arc/CE140100016
dc.relation.ispartofseriesIEEE International Conference on Robotics and Automation ICRA
dc.rights©2019 IEEE
dc.source.urihttps://ieeexplore.ieee.org/xpl/conhome/8780387/proceeding
dc.titleSelf-supervised learning for single view depth and surface normal estimation
dc.typeConference paper
pubs.publication-statusPublished

Files