Sequences of stable bundles over compact complex surfaces

dc.contributor.authorBuchdahl, N.
dc.date.issued1999
dc.description.abstractWhen identified with sequences of irreducible Hermitian-Einstein connections, sequences of stable holomorphic bundles of fixed topological type and bounded degree on a compact complex surface equipped with a Gauduchon metric are shown to have strongly convergent subsequences after blowing-up and pulling-back sufficiently many times.
dc.description.statementofresponsibilityNicholas P. Buchdahl
dc.identifier.citationJournal of Geometric Analysis, 1999; 9(3):391-428
dc.identifier.doi10.1007/BF02921982
dc.identifier.issn1050-6926
dc.identifier.issn1559-002X
dc.identifier.orcidBuchdahl, N. [0000-0003-3520-6618]
dc.identifier.urihttp://hdl.handle.net/2440/3602
dc.language.isoen
dc.publisherSpringer Verlag
dc.rights© 1999 The Journal of Geometric Analysis
dc.source.urihttps://doi.org/10.1007/bf02921982
dc.titleSequences of stable bundles over compact complex surfaces
dc.typeJournal article
pubs.publication-statusPublished

Files