Sequences of stable bundles over compact complex surfaces
dc.contributor.author | Buchdahl, N. | |
dc.date.issued | 1999 | |
dc.description.abstract | When identified with sequences of irreducible Hermitian-Einstein connections, sequences of stable holomorphic bundles of fixed topological type and bounded degree on a compact complex surface equipped with a Gauduchon metric are shown to have strongly convergent subsequences after blowing-up and pulling-back sufficiently many times. | |
dc.description.statementofresponsibility | Nicholas P. Buchdahl | |
dc.identifier.citation | Journal of Geometric Analysis, 1999; 9(3):391-428 | |
dc.identifier.doi | 10.1007/BF02921982 | |
dc.identifier.issn | 1050-6926 | |
dc.identifier.issn | 1559-002X | |
dc.identifier.orcid | Buchdahl, N. [0000-0003-3520-6618] | |
dc.identifier.uri | http://hdl.handle.net/2440/3602 | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.rights | © 1999 The Journal of Geometric Analysis | |
dc.source.uri | https://doi.org/10.1007/bf02921982 | |
dc.title | Sequences of stable bundles over compact complex surfaces | |
dc.type | Journal article | |
pubs.publication-status | Published |