Distribution models for koalas in South Australia using citizen science-collected data

Date

2014

Authors

Sequeira, A.
Roetman, P.
Daniels, C.
Baker, A.
Bradshaw, C.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Ecology and Evolution, 2014; 4(11):2103-2114

Statement of Responsibility

Ana M. M. Sequeira, Philip E. J. Roetman, Christopher B. Daniels, Andrew K. Baker, Corey J. A. Bradshaw

Conference Name

Abstract

The koala (Phascolarctos cinereus ) occurs in the eucalypt forests of eastern and southern Australia and is currently threatened by habitat fragmentation, climate change, sexually transmitted diseases, and low genetic variability throughout most of its range. Using data collected during the Great Koala Count (a 1-day citizen science project in the state of South Australia), we developed generalized linear mixed-effects models to predict habitat suitability across South Australia accounting for potential errors associated with the dataset. We derived spatial environmental predictors for vegetation (based on dominant species of Eucalyptus or other vegetation), topographic water features, rain, elevation, and temperature range. We also included predictors accounting for human disturbance based on transport infrastructure (sealed and unsealed roads). We generated random pseudo-absences to account for the high prevalence bias typical of citizen-collected data. We accounted for biased sampling effort along sealed and unsealed roads by including an offset for distance to transport infrastructures. The model with the highest statistical support (wAIC c ~ 1) included all vari- ables except rain, which was highly correlated with elevation. The same model also explained the highest deviance (61.6%), resulted in high R 2 (m) (76.4) and R 2 (c) (81.0), and had a good performance according to Cohen’s j (0.46). Cross-validation error was low (~ 0.1). Temperature range, elevation, and rain were the best predictors of koala occurrence. Our models predict high habitat suitability in Kangaroo Island, along the Mount Lofty Ranges, and at the tips of the Eyre, Yorke and Fleurieu Peninsulas. In the highest-density region (5576 km 2 ) of the Adelaide–Mount Lofty Ranges, a density–suitability relation- ship predicts a population of 113,704 (95% confidence interval: 27,685–199,723; average density = 5.0– 35.8 km 2 ). We demonstrate the power of citizen science data for predicting species’ distributions provided that the statistical approaches applied account for some uncertainties and potential biases. A future improve- ment to citizen science surveys to provide better data on search effort is that smartphone apps could be activated at the start of the search. The results of our models provide preliminary ranges of habitat suitability and population size for a species for which previous data have been difficult or impossible to gather otherwise.

School/Discipline

Dissertation Note

Provenance

Description

Access Status

Rights

© 2014 The Authors.

License

Grant ID

Call number

Persistent link to this record