Approximate Fisher information matrix to characterise the training of deep neural networks

Date

2020

Authors

Liao, Z.
Drummond, T.
Reid, I.
Carneiro, G.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020; 42(1):15-26

Statement of Responsibility

Zhibin Liao, Tom Drummond, Ian Reid, Gustavo Carneiro,

Conference Name

Abstract

In this paper, we introduce a novel methodology for characterising the performance of deep learning networks (ResNets and DenseNet) with respect to training convergence and generalisation as a function of mini-batch size and learning rate for image classification. This methodology is based on novel measurements derived from the eigenvalues of the approximate Fisher information matrix, which can be efficiently computed even for high capacity deep models. Our proposed measurements can help practitioners to monitor and control the training process (by actively tuning the mini-batch size and learning rate) to allow for good training convergence and generalisation. Furthermore, the proposed measurements also allow us to show that it is possible to optimise the training process with a new dynamic sampling training approach that continuously and automatically change the mini-batch size and learning rate during the training process. Finally, we show that the proposed dynamic sampling training approach has a faster training time and a competitive classification accuracy compared to the current state of the art.

School/Discipline

Dissertation Note

Provenance

Description

Date of Publication: 16 October 2018

Access Status

Rights

© IEEE

License

Call number

Persistent link to this record