Unitals and Inversive Planes
dc.contributor.author | Barwick, S. | |
dc.contributor.author | O'Keefe, C. | |
dc.date.issued | 1997 | |
dc.description.abstract | We show that if U is a Buekenhout-Metz unital (with respect to a point P) in any translation plane of order q<sup>2</sup> with kernel containing GF(q), then U has an associated 2-(q<sup>2</sup>, q + 1, q) design which is the point-residual of an inversive plane, generalizing results of Wilbrink, Baker and Ebert. Further, our proof gives a natural, geometric isomorphism between the resulting inversive plane and the (egglike) inversive plane arising from the ovoid involved in the construction of the Buekenhout-Metz unital. We apply our results to investigate some parallel classes and partitions of the set of blocks of any Buekenhout-Metz unital. © Birkhäuser Verlag, Basel, 1997. | |
dc.identifier.citation | Journal of Geometry, 1997; 58(1-2):43-52 | |
dc.identifier.doi | 10.1007/BF01222925 | |
dc.identifier.issn | 0047-2468 | |
dc.identifier.issn | 1420-8997 | |
dc.identifier.orcid | Barwick, S. [0000-0001-9492-0323] | |
dc.identifier.uri | http://hdl.handle.net/2440/3609 | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media LLC | |
dc.source.uri | https://doi.org/10.1007/bf01222925 | |
dc.title | Unitals and Inversive Planes | |
dc.type | Journal article | |
pubs.publication-status | Published |