Unitals and Inversive Planes

dc.contributor.authorBarwick, S.
dc.contributor.authorO'Keefe, C.
dc.date.issued1997
dc.description.abstractWe show that if U is a Buekenhout-Metz unital (with respect to a point P) in any translation plane of order q<sup>2</sup> with kernel containing GF(q), then U has an associated 2-(q<sup>2</sup>, q + 1, q) design which is the point-residual of an inversive plane, generalizing results of Wilbrink, Baker and Ebert. Further, our proof gives a natural, geometric isomorphism between the resulting inversive plane and the (egglike) inversive plane arising from the ovoid involved in the construction of the Buekenhout-Metz unital. We apply our results to investigate some parallel classes and partitions of the set of blocks of any Buekenhout-Metz unital. © Birkhäuser Verlag, Basel, 1997.
dc.identifier.citationJournal of Geometry, 1997; 58(1-2):43-52
dc.identifier.doi10.1007/BF01222925
dc.identifier.issn0047-2468
dc.identifier.issn1420-8997
dc.identifier.orcidBarwick, S. [0000-0001-9492-0323]
dc.identifier.urihttp://hdl.handle.net/2440/3609
dc.language.isoen
dc.publisherSpringer Science and Business Media LLC
dc.source.urihttps://doi.org/10.1007/bf01222925
dc.titleUnitals and Inversive Planes
dc.typeJournal article
pubs.publication-statusPublished

Files